期刊文献+
共找到5,637篇文章
< 1 2 250 >
每页显示 20 50 100
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space 被引量:2
1
作者 Yahui Liu Bin Tian +2 位作者 Yisheng Lv Lingxi Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期231-239,共9页
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT. 展开更多
关键词 content-based Transformer deep learning feature aggregator local attention point cloud classification
下载PDF
Automatic Extraction Method of 3D Feature Guidelines for Complex Cultural Relic Surfaces Based on Point Cloud 被引量:1
2
作者 GENG Yuxin ZHONG Ruofei +1 位作者 HUANG Yuqin SUN Haili 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期16-41,共26页
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct... Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics. 展开更多
关键词 point cloud conformal parameterization vertex weight surface mesh cultural relics feature extraction
下载PDF
Building Facade Point Clouds Segmentation Based on Optimal Dual-Scale Feature Descriptors
3
作者 Zijian Zhang Jicang Wu 《Journal of Computer and Communications》 2024年第6期226-245,共20页
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca... To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings. 展开更多
关键词 3D Laser Scanning point clouds Building Facade Segmentation point cloud Processing feature Descriptors
下载PDF
Research on color image matching method based on feature point compensation in dark light environment 被引量:1
4
作者 唐华鹏 QIN Danyang +2 位作者 YAN Mengying YANG Jiaqiang ZHANG Gengxin 《High Technology Letters》 EI CAS 2023年第1期78-86,共9页
Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching ... Image matching refers to the process of matching two or more images obtained at different time,different sensors or different conditions through a large number of feature points in the image.At present,image matching is widely used in target recognition and tracking,indoor positioning and navigation.Local features missing,however,often occurs in color images taken in dark light,making the extracted feature points greatly reduced in number,so as to affect image matching and even fail the target recognition.An unsharp masking(USM)based denoising model is established and a local adaptive enhancement algorithm is proposed to achieve feature point compensation by strengthening local features of the dark image in order to increase amount of image information effectively.Fast library for approximate nearest neighbors(FLANN)and random sample consensus(RANSAC)are image matching algorithms.Experimental results show that the number of effective feature points obtained by the proposed algorithm from images in dark light environment is increased,and the accuracy of image matching can be improved obviously. 展开更多
关键词 dark light environment unsharp masking(USM) denoising model feature point compensation fast library for approximate nearest neighbor(FLANN) random sample consensus(RANSAc)
下载PDF
SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation
5
作者 Suyi Liu Jianning Chi +2 位作者 Chengdong Wu Fang Xu Xiaosheng Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4471-4489,共19页
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and... In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation. 展开更多
关键词 3D point cloud semantic segmentation long-range contexts global-local feature graph convolutional network dense-sparse sampling strategy
下载PDF
A Hybrid Features Based Detection Method for Inshore Ship Targets in SAR Imagery 被引量:2
6
作者 Tong ZHENG Peng LEI Jun WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期95-107,共13页
Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du... Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images. 展开更多
关键词 convolutional Neural Network(cNN) Synthetic Aperture Radar(SAR) inshore ship detection hybrid features high-energy point number amplitude spectrum
下载PDF
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis 被引量:1
7
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 Relative Radiometric Normalization Scale Invariant feature Transform Automatically Extraction control points Sum of Absolute Difference
下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather
8
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
下载PDF
FeatureMatching Combining Variable Velocity Model with Reverse Optical Flow
9
作者 Chang Zhao Wei Sun +3 位作者 Xiaorui Zhang Xiaozheng He Jun Zuo Wei Zhao 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1083-1094,共12页
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an... The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition. 展开更多
关键词 Visual SLAM feature point matching variable velocity model reverse optical flow
下载PDF
Automatic Feature Point Detection and Tracking of Human Actions in Time-of-flight Videos 被引量:8
10
作者 Xiaohui Yuan Longbo Kong +1 位作者 Dengchao Feng Zhenchun Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期677-685,共9页
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag... Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms. 展开更多
关键词 feature point human pose detection joint detection time-of-flight(ToF) videos
下载PDF
Point Reg Net: Invariant Features for Point Cloud Registration Using in Image-Guided Radiation Therapy 被引量:1
11
作者 Zhengfei Ma Bo Liu +1 位作者 Fugen Zhou Jingheng Chen 《Journal of Computer and Communications》 2018年第11期116-125,共10页
In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to th... In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to the common applications of manually designed keypoint descriptors for coarse point cloud registration. The CPN directly consumes a point cloud, divides it into equally spaced 3D voxels and transforms the points within each voxel into a unified feature representation through voxel feature encoding (VFE) layer. Then all volumetric representations are aggregated by Weighted Extraction Layer which selectively extracts features and synthesize into global descriptors and coordinates of control points. Utilizing global descriptors instead of local features allows the available geometrical data to be better exploited to improve the robustness and precision. Specifically, CPN unifies feature extraction and clustering into a single network, omitting time-consuming feature matching procedure. The algorithm is tested on point cloud datasets generated from CT images. Experiments and comparisons with the state-of-the-art descriptors demonstrate that CPN is highly discriminative, efficient, and robust to noise and density changes. 展开更多
关键词 Medical Image REGISTRATION point cLOUD Deep Learning INVARIANT feature
下载PDF
Image Relaxation Matching Based on Feature Points for DSM Generation 被引量:1
12
作者 ZHENGShunyi ZHANGZuxun ZHANGJianqing 《Geo-Spatial Information Science》 2004年第4期243-248,共6页
In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can ... In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable. 展开更多
关键词 image matching probability relaxation feature point digital surface model
下载PDF
A Novel Airborne 3D Laser Point Cloud Hole Repair Algorithm Considering Topographic Features 被引量:5
13
作者 Zan ZHU Shu GAN +1 位作者 Jianqi WANG Nijia QIAN 《Journal of Geodesy and Geoinformation Science》 2020年第3期29-38,共10页
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3... Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved. 展开更多
关键词 airborne 3D laser scanning point cloud hole repair topographic feature line extraction mountain mapping
下载PDF
Effective Self-calibration for Camera Parameters and Hand-eye Geometry Based on Two Feature Points Motions 被引量:3
14
作者 Jia Sun Peng Wang +1 位作者 Zhengke Qin Hong Qiao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期370-380,共11页
A novel and effective self-calibration approach for robot vision is presented, which can effectively estimate both the camera intrinsic parameters and the hand-eye transformation at the same time. The proposed calibra... A novel and effective self-calibration approach for robot vision is presented, which can effectively estimate both the camera intrinsic parameters and the hand-eye transformation at the same time. The proposed calibration procedure is based on two arbitrary feature points of the environment, and three pure translational motions and two rotational motions of robot endeffector are needed. New linear solution equations are deduced, and the calibration parameters are finally solved accurately and effectively. The proposed algorithm has been verified by simulated data with different noise and disturbance. Because of the need of fewer feature points and robot motions, the proposed method greatly improves the efficiency and practicality of the calibration procedure. © 2017 Chinese Association of Automation. 展开更多
关键词 cameras computer vision ROBOTS
下载PDF
Feature detection on point clouds via Gabriel Triangles creation and l1 normal reconstruction 被引量:1
15
作者 ZHANG Shaoguang WANG Xiaochao +1 位作者 CAO Junjie WANG Jun 《Computer Aided Drafting,Design and Manufacturing》 2012年第4期29-35,共7页
In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features usin... In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method. 展开更多
关键词 feature detection point clouds subneighborhoods selection Gabriel triangles creation l1 normal reconstruction
下载PDF
Loop Closure Detection of Visual SLAM Based on Point and Line Features
16
作者 Chang’an Liu Ruiying Cheng Lijuan Zhao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第2期58-64,共7页
For traditional loop closure detection algorithm,only using the vectorization of point features to build visual dictionary is likely to cause perceptual ambiguity.In addition,when scene lacks texture information,the n... For traditional loop closure detection algorithm,only using the vectorization of point features to build visual dictionary is likely to cause perceptual ambiguity.In addition,when scene lacks texture information,the number of point features extracted from it will be small and cannot describe the image effectively.Therefore,this paper proposes a loop closure detection algorithm which combines point and line features.To better recognize scenes with hybrid features,the building process of traditional dictionary tree is improved in the paper.The features with different flag bits were clustered separately to construct a mixed dictionary tree and word vectors that can represent the hybrid features,which can better describe structure and texture information of scene.To ensure that the similarity score between images is more reasonable,different similarity coefficients were set in different scenes,and the candidate frame with the highest similarity score was selected as the candidate closed loop.Experiments show that the point line comprehensive feature was superior to the single feature in the structured scene and the strong texture scene,the recall rate of the proposed algorithm was higher than the state of the art methods when the accuracy is 100%,and the algorithm can be applied to more diverse environments. 展开更多
关键词 LOOP cLOSURE DETEcTION SLAM visual DIcTIONARY point and line features
下载PDF
GRADIENT OF REFERENCE DIFFERENCE BASED MATCHING ALGORITHM FOR IMAGE FEATURE POINT
17
作者 GuanYepeng GuWeikang YeXiuqing LiuJilin 《Journal of Electronics(China)》 2004年第2期163-169,共7页
During matching on feature point, gray correlation matching technology is utilized to extract multi-peaks as a coarse matching set. A pair of given corresponding reference points within the left and right images is us... During matching on feature point, gray correlation matching technology is utilized to extract multi-peaks as a coarse matching set. A pair of given corresponding reference points within the left and right images is used to calculate gradients of reference difference between the reference points and each feature point within the multi-peaks set. The unique correspondence is determined by criterion of minimal gradients of reference difference. The obtained correspondence is taken as a new pair of reference points to update the reference points continuously until all feature points in the left (or right) image being matched with the right (or left) image. The gradients of reference difference can be calculated easily by means of pre-setting a pair of obvious feature points in the left and right images as a pair of corresponding reference points. Besides, the efficiency of matching can be improved greatly by taking the obtained matching point as a new pair of reference points, and by updating the reference point continuously. It is proved that the proposed algorithm is valid and reliable by 3D reconstruction on two pairs of actual natural images with abundant and weak texture, respectively. 展开更多
关键词 feature point Gray correlation Multi-peaks set MATcHING Reference point
下载PDF
A calculation method for low dynamic vehicle velocity based on fusion of optical flow and feature point matching
18
作者 Liu Di Chen Xiyuan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期426-431,共6页
Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the... Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method. 展开更多
关键词 VELOcITY optical fow feature point matching non-uniform light intensity distribution
下载PDF
STATISTICAL PROBABILITY BASED ALGORITHM FOR EXTRACTING FEATURE POINTS IN 2-DIMENSIONAL IMAGE
19
作者 GuanYepeng GuWeikang YeXiuqing LiuJilin 《Journal of Electronics(China)》 2004年第2期170-176,共7页
An algorithm for automatically extracting feature points is developed after the area of feature points in 2-dimensional (2D) imagebeing located by probability theory, correlated methods and criterion for abnormity. Fe... An algorithm for automatically extracting feature points is developed after the area of feature points in 2-dimensional (2D) imagebeing located by probability theory, correlated methods and criterion for abnormity. Feature points in 2D image can be extracted only by calculating standard deviation of gray within sampled pixels area in our approach statically. While extracting feature points, the limitation to confirm threshold by tentative method according to some a priori information on processing image can be avoided. It is proved that the proposed algorithm is valid and reliable by extracting feature points on actual natural images with abundant and weak texture, including multi-object with complex background, respectively. It can meet the demand of extracting feature points of 2D image automatically in machine vision system. 展开更多
关键词 Probability theory Standard deviation Abnormity Noise feature point
下载PDF
Arm-Root Curve Fitting Based on Body Surface Feature Points for Young Male
20
作者 Kaili Liu Hongshu Jin 《World Journal of Engineering and Technology》 2021年第2期241-249,共9页
<div style="text-align:justify;"> This paper is aiming to obtain an arm-root curve function performing the human arm-root size and shape realistically. A gypsum replica of upper arm for young male was ... <div style="text-align:justify;"> This paper is aiming to obtain an arm-root curve function performing the human arm-root size and shape realistically. A gypsum replica of upper arm for young male was made and scanned for extracting the 3D coordinates of 4 feature points of shoulder point, the anterior/posterior armpit point and the axillary point describing the real arm-root shape under the normalized definitions, and the 5 landmarks were confirmed additionally for improving the fitting precision. Then, the wholly and piecewise fitting of arm-root curve with 9 feature points and mark points in total were generated respectively based on least square polynomial fitting method. Comparing to the wholly fitting, the piecewise fitted function segmented by the line between anterior and posterior axillary points showed a high fitting degree of arm-root morphology with R-square of 1, the length difference between fitted curve and gypsum curve is 0.003 cm within error range. And it provided a basic curve model with standard feature points to simulate arm-root morphology realistically by curve fitting for accurate body measurement extraction. </div> 展开更多
关键词 Arm-Root Morphology cURVE-FITTING feature point Piecewise curve Fitting Arm-Root curve Simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部