Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were establi...Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.展开更多
This review explores the nutritional and health benefits of three vegetable plants in Chad: Abelmoschus esculentus, Hibiscus sabdariffa, and Corchorus olitorius L. These plants are widely consumed by Chadian populatio...This review explores the nutritional and health benefits of three vegetable plants in Chad: Abelmoschus esculentus, Hibiscus sabdariffa, and Corchorus olitorius L. These plants are widely consumed by Chadian population, but few research studies have focused on their nutritional and health benefits. The aim is to stimulate research, investment, and in-depth studies on these plants to encourage their use and transformation in Chad. Abelmoschus esculentus, Hibiscus sabdariffa, and Corchorus olitorius L. are Malvaceae species with medicinal properties and traditional use in Chad. They contain essential amino acids and have antinociceptive, anxiolytic, anti-inflammatory, and anxiolytic activities. Their extract has hypoglycemic potential as a preventative or adjunct therapy for pre-diabetes or diabetes. Hibiscus sabdariffa is rich in essential vitamins, including vitamin A, which is beneficial for eyes, anti-aging, and sight. Its vitamin C helps fight free radicals and ensures good resistance to infections. Corchorus olitorius L. has a nutritional composition ranging from 1.2 to 34.4 mg/100 g and is known for its mucilaginous seeds, young tops and leaves, and silky hair. These plants have potential medicinal applications in antidiabetic, anti-gastritis, and prebiotic fields, and play a significant role in neural development and health. Promoting their use in Chad requires conservation programs, public policies, and local population planting. Future research should focus on their nutritional and medicinal properties, targeting underutilized species to address micronutrient deficiencies. Enhancing bioconservative properties and communication of these plants’ virtues are crucial for their optimal availability and protection.展开更多
To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable is...To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.展开更多
Objective To elucidate the effects of chlorogenic acid(CGA),a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods,including Lonicera japonica Thunb.(Jin Yin Hua),Eucommia ulmoides...Objective To elucidate the effects of chlorogenic acid(CGA),a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods,including Lonicera japonica Thunb.(Jin Yin Hua),Eucommia ulmoides Oliv.(Du Zhong Ye),tea,and coffee,on cardiomyocyte ferroptosis and heart failure.Methods We assessed the effect of CGA on cardiac function using a mouse model of heart failure induced by transverse aortic constriction(TAC).These indicators included the left ventricular ejection fraction(LVEF),fractional shortening(LVFS),end-systolic volume(LVESV),end-diastolic volume(LVEDV),end-systolic diameter(LVESD),and end-diastolic diameter(LVEDD).An isoprenaline hydrochloride(ISO)-induced H9c2 cardiomyocyte cell model was also established,and the cells were treated with various concentrations of CGA.To assess the effect of CGA on ferroptosis in cardiomyocytes,we measured cell viability and evaluated the levels of intracellular reactive oxygen species(ROS),ferrous ions(Fe^(2+)),and lipid peroxidation using fluorescent staining.To clarify the ferroptosis signaling pathway regulated by CGA,western blotting was used to examine the expression of ferroptosis biomarkers,specifically solute carrier family 7 member 11(SLC7A11)and glutathione peroxidase 4(GPX4),in H9c2 cardiomyocytes and mouse myocardial tissues.Results CGA significantly enhanced cardiac performance indices such as LVEF,LVFS,LVESV,LVEDV,LVESD,and LVEDD.H9c2 cardiomyocytes exposed to ISO showed decreased cell viability and increased ROS levels,Fe^(2+)content,and lipid peroxidation levels.However,CGA treatment significantly ameliorated these changes.Additionally,in both H9c2 cardiomyocytes and myocardial tissue obtained from mice with TAC,CGA increased the expression of ferroptosis-related proteins,including SLC7A11 and GPX4.Conclusion CGA has the potential to enhance cardiac function and diminish lipid peroxidation and ROS levels in cardiomyocytes via the SLC7A11/GPX4 signaling pathway.This process alleviates ferroptosis in cardiomyocytes.These results provide new insights into the clinical use of CGA and the management of heart failure.展开更多
This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS...This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.展开更多
Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocyte...Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocytes treated with different concentrations of H2O2. Normal cultured cells were used as the blank control group, and the cells were treated with 200 μmol/L H2O2 for 24 h. An oxidative stress injury model was constructed as the model group. The cells were pretreated with 1%, 0.1% and 0.01% camellia oil for 24 h, and then H2O2 was added for 24 h as the experimental group. The β-galactosidase senescence staining assay, mitochondrial membrane potential assay, EdU cell proliferation staining assay and scratch assay were used to observe the changes of cell senescence, mitochondrial membrane potential, proliferation, apoptosis and migration in each group. The superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) activity, and malondialdehyde (MDA) content of the cells in each group were detected by using the kit. Results: The cell viability of H9C2 cardiomyocytes treated with different concentrations of H2O2 was inhibited and positively correlated with the concentration of H2O2 (P<0.01). Compared with the blank control group, the positive rate of cell senescence, MDA content and LDH activity increased in the H2O2 model group (P<0.01);mitochondrial membrane potential, cellular value-added rate, migration rate and SOD activity decreased (P<0.01). Compared with the H2O2 model group, the positive rate of cellular senescence (P<0.01 or P<0.05), MDA content and LDH activity decreased (P< 0.01 or P<0.05);mitochondrial membrane potential increased, cell proliferation rate and migration rate increased (P<0.01 or P<0.05) in the experimental group. Conclusion: Camellia oil can significantly inhibit oxidative stress injury in H9C2 cells and exert cardiomyocyte protective effects.展开更多
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
基金supported by the National Natural Science Foundation of China(81971875,82300661)Natural Science Foundation of Anhui province(2308085QH246)+3 种基金Natural Science Foundation of the Anhui Higher Education Institutions(KJ2021A0205)Basic and Clinical Cooperative Research Program of Anhui Medical University(2019xkjT002,2019xkjT022,2022xkjT013)Talent Training Program,School of Basic Medical Sciences,Anhui Medical University(2022YPJH102)National College Students Innovation and Entrepreneurship Training Program of China(202210366024)。
文摘Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.
文摘This review explores the nutritional and health benefits of three vegetable plants in Chad: Abelmoschus esculentus, Hibiscus sabdariffa, and Corchorus olitorius L. These plants are widely consumed by Chadian population, but few research studies have focused on their nutritional and health benefits. The aim is to stimulate research, investment, and in-depth studies on these plants to encourage their use and transformation in Chad. Abelmoschus esculentus, Hibiscus sabdariffa, and Corchorus olitorius L. are Malvaceae species with medicinal properties and traditional use in Chad. They contain essential amino acids and have antinociceptive, anxiolytic, anti-inflammatory, and anxiolytic activities. Their extract has hypoglycemic potential as a preventative or adjunct therapy for pre-diabetes or diabetes. Hibiscus sabdariffa is rich in essential vitamins, including vitamin A, which is beneficial for eyes, anti-aging, and sight. Its vitamin C helps fight free radicals and ensures good resistance to infections. Corchorus olitorius L. has a nutritional composition ranging from 1.2 to 34.4 mg/100 g and is known for its mucilaginous seeds, young tops and leaves, and silky hair. These plants have potential medicinal applications in antidiabetic, anti-gastritis, and prebiotic fields, and play a significant role in neural development and health. Promoting their use in Chad requires conservation programs, public policies, and local population planting. Future research should focus on their nutritional and medicinal properties, targeting underutilized species to address micronutrient deficiencies. Enhancing bioconservative properties and communication of these plants’ virtues are crucial for their optimal availability and protection.
基金support granted to carry out the research,and for the funding,Dr.Graciela Herrera Zamarron,responsible for the project with Contract number 0266-1O-ED-F-DGAT-UNAM-2-19-1928.
文摘To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.
基金supported by the National Natural Science Foundation of China(82174206)National Natural Science Foundation of China,International(Regional)Cooperation and Exchange Program(82261138556).
文摘Objective To elucidate the effects of chlorogenic acid(CGA),a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods,including Lonicera japonica Thunb.(Jin Yin Hua),Eucommia ulmoides Oliv.(Du Zhong Ye),tea,and coffee,on cardiomyocyte ferroptosis and heart failure.Methods We assessed the effect of CGA on cardiac function using a mouse model of heart failure induced by transverse aortic constriction(TAC).These indicators included the left ventricular ejection fraction(LVEF),fractional shortening(LVFS),end-systolic volume(LVESV),end-diastolic volume(LVEDV),end-systolic diameter(LVESD),and end-diastolic diameter(LVEDD).An isoprenaline hydrochloride(ISO)-induced H9c2 cardiomyocyte cell model was also established,and the cells were treated with various concentrations of CGA.To assess the effect of CGA on ferroptosis in cardiomyocytes,we measured cell viability and evaluated the levels of intracellular reactive oxygen species(ROS),ferrous ions(Fe^(2+)),and lipid peroxidation using fluorescent staining.To clarify the ferroptosis signaling pathway regulated by CGA,western blotting was used to examine the expression of ferroptosis biomarkers,specifically solute carrier family 7 member 11(SLC7A11)and glutathione peroxidase 4(GPX4),in H9c2 cardiomyocytes and mouse myocardial tissues.Results CGA significantly enhanced cardiac performance indices such as LVEF,LVFS,LVESV,LVEDV,LVESD,and LVEDD.H9c2 cardiomyocytes exposed to ISO showed decreased cell viability and increased ROS levels,Fe^(2+)content,and lipid peroxidation levels.However,CGA treatment significantly ameliorated these changes.Additionally,in both H9c2 cardiomyocytes and myocardial tissue obtained from mice with TAC,CGA increased the expression of ferroptosis-related proteins,including SLC7A11 and GPX4.Conclusion CGA has the potential to enhance cardiac function and diminish lipid peroxidation and ROS levels in cardiomyocytes via the SLC7A11/GPX4 signaling pathway.This process alleviates ferroptosis in cardiomyocytes.These results provide new insights into the clinical use of CGA and the management of heart failure.
基金The ATLAS project is primarily funded to search for near-earth asteroids through NASA grants NN12AR55G,80NSSC18K0284,and 80NSSC18K1575funded by Kepler/K2 grant J1944/80NSSC19K0112 and HST GO-15889,and STFC grants ST/T000198/1 and ST/S006109/1。
文摘This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.
基金National Natural Science Foundation of China(No.82160597)Guangxi Natural Science Foundation Project(No.2020GXNSFAA159148)。
文摘Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocytes treated with different concentrations of H2O2. Normal cultured cells were used as the blank control group, and the cells were treated with 200 μmol/L H2O2 for 24 h. An oxidative stress injury model was constructed as the model group. The cells were pretreated with 1%, 0.1% and 0.01% camellia oil for 24 h, and then H2O2 was added for 24 h as the experimental group. The β-galactosidase senescence staining assay, mitochondrial membrane potential assay, EdU cell proliferation staining assay and scratch assay were used to observe the changes of cell senescence, mitochondrial membrane potential, proliferation, apoptosis and migration in each group. The superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) activity, and malondialdehyde (MDA) content of the cells in each group were detected by using the kit. Results: The cell viability of H9C2 cardiomyocytes treated with different concentrations of H2O2 was inhibited and positively correlated with the concentration of H2O2 (P<0.01). Compared with the blank control group, the positive rate of cell senescence, MDA content and LDH activity increased in the H2O2 model group (P<0.01);mitochondrial membrane potential, cellular value-added rate, migration rate and SOD activity decreased (P<0.01). Compared with the H2O2 model group, the positive rate of cellular senescence (P<0.01 or P<0.05), MDA content and LDH activity decreased (P< 0.01 or P<0.05);mitochondrial membrane potential increased, cell proliferation rate and migration rate increased (P<0.01 or P<0.05) in the experimental group. Conclusion: Camellia oil can significantly inhibit oxidative stress injury in H9C2 cells and exert cardiomyocyte protective effects.