Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident...Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.展开更多
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr...In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We app...In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ...This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.展开更多
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside...The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.展开更多
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over...These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.展开更多
文摘Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures.
基金Project(51209167) supported by Youth Project of the National Natural Science Foundation of ChinaProject(2012JM8026) supported by Shaanxi Provincial Natural Science Foundation, China
文摘In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
文摘This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.
基金supported by proposal No.OSD/BCUD/392/197 Board of Colleges and University Development,Savitribai Phule Pune University,Pune
文摘The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.
基金Supported by the National High Technology Research and Development Programme (No.2007AA12Z227) and the National Natural Science Foundation of China (No.40701146).
文摘These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.