为有效提高C语言中间表达式解读程序信息的能力,在结合C语言自身语言特点的基础上,引入流程控制图(Flow Control Graph,FCG)匹配自动评分方法,该方法能够根据C语言的特点,计算学生答案与参考答案之间的相似度,给出评分。引入最近邻(Flow...为有效提高C语言中间表达式解读程序信息的能力,在结合C语言自身语言特点的基础上,引入流程控制图(Flow Control Graph,FCG)匹配自动评分方法,该方法能够根据C语言的特点,计算学生答案与参考答案之间的相似度,给出评分。引入最近邻(Flow Control-KNN,FC-KNN)算法来对FCG算法进行模板脱敏,在FCG的基础上,运用k临近算法根据提取的特征对程序进行评分。实验结果证明,FCG和FC-KNN算法在独立运行时分别具有91.5%和92.3%的平均准确率,而经过融合后,算法之间实现了优势互补,准确率提升到94.0%,在独立运行的情况下,FC-KNN算法的评分效果较FCG好,准确性更高,对两种算法进行数据融合、优势互补,验证了集成后的分类模型在评分的整个过程中,均能够达到良好的分类效果,具有较高的准确率。展开更多
文摘为有效提高C语言中间表达式解读程序信息的能力,在结合C语言自身语言特点的基础上,引入流程控制图(Flow Control Graph,FCG)匹配自动评分方法,该方法能够根据C语言的特点,计算学生答案与参考答案之间的相似度,给出评分。引入最近邻(Flow Control-KNN,FC-KNN)算法来对FCG算法进行模板脱敏,在FCG的基础上,运用k临近算法根据提取的特征对程序进行评分。实验结果证明,FCG和FC-KNN算法在独立运行时分别具有91.5%和92.3%的平均准确率,而经过融合后,算法之间实现了优势互补,准确率提升到94.0%,在独立运行的情况下,FC-KNN算法的评分效果较FCG好,准确性更高,对两种算法进行数据融合、优势互补,验证了集成后的分类模型在评分的整个过程中,均能够达到良好的分类效果,具有较高的准确率。