Based on the background of internationalization of higher education, the article analyzed the forms, size, significance and problems of the international students'exchange launched in Dali University of Yunnan Pro...Based on the background of internationalization of higher education, the article analyzed the forms, size, significance and problems of the international students'exchange launched in Dali University of Yunnan Province; and then provided the sustainable developing strategies for the program.展开更多
Objective To determine the in vitro possible clastogenic and cytotoxic activities of Ulva rigida crude extracts (URE), and identify their antigenotoxic and protective effects on chemotherapeutic agent mitomycine-C ...Objective To determine the in vitro possible clastogenic and cytotoxic activities of Ulva rigida crude extracts (URE), and identify their antigenotoxic and protective effects on chemotherapeutic agent mitomycine-C (MMC). Methods Anti-clastogenic and anti-genotoxic activities of Ulva rigida crude extracts (URE) were studied using chromosome aberration (CA), sister chromatid exchange (SCE), and micronuclei (MN) tests in human lymphocytes cultured in vitro. Results The chromosome aberration, sister chromatid exchange or micronuclei tests showed that URE at concentrations of 10, 20, and 40 lag/mL had no clastogenic activity in human lymphocyte cell culture. Three doses of URE significantly decreased the number of chromosomal aberrations and the frequencies of SCE and MN when compared with the culture treated with MMC (P〈0.0001). Conclusion Although URE itself is not a clastogenic or cytotoxic substance, it possesses strong antigenotoxic, anti-clastogenic, and protective effects on MMC in vitro.展开更多
Atomically dispersed iron-nitrogen-carbon(Fe-N-C) catalysts have emerged as the most promising alternative to the expensive Pt-based catalysts for the oxygen reduction reaction(ORR) in proton exchange membrane fuel ce...Atomically dispersed iron-nitrogen-carbon(Fe-N-C) catalysts have emerged as the most promising alternative to the expensive Pt-based catalysts for the oxygen reduction reaction(ORR) in proton exchange membrane fuel cells(PEMFCs),however suffer from low site density of active Fe-N4 moiety and limited mass transport during the catalytic reaction.To address these challenges,we report a three-dimensional(3D) metal-organic frameworks(MOF)-derived Fe-N-C single-atom catalyst.In this well-designed Fe-N-C catalyst,the micro-scale interconnected skeleton,the nano-scale ordered pores and the atomic-scale abundant carbon edge defects inside the skeleton significantly enhance the site density of active Fe-N4 moiety,thus improving the Fe utilization in the final catalyst.Moreover,the combination of the above mentioned micro-and nano-scale structures greatly facilitates the mass transport in the 3D Fe-N-C catalyst.Therefore,the multiscale engineered Fe-N-C single-atom catalyst achieves excellent ORR performance under acidic condition and affords a significantly enhanced current density and power density in PEMFC.Our findings may open new opportunities for the rational design of FeN-C catalysts through multiscale structural engineering.展开更多
文摘Based on the background of internationalization of higher education, the article analyzed the forms, size, significance and problems of the international students'exchange launched in Dali University of Yunnan Province; and then provided the sustainable developing strategies for the program.
基金supported by a grant from the Scientific and Technical Research Council of Turkey, Ankara (TüBiTAK, 107T279 (TBAG/HD-304).
文摘Objective To determine the in vitro possible clastogenic and cytotoxic activities of Ulva rigida crude extracts (URE), and identify their antigenotoxic and protective effects on chemotherapeutic agent mitomycine-C (MMC). Methods Anti-clastogenic and anti-genotoxic activities of Ulva rigida crude extracts (URE) were studied using chromosome aberration (CA), sister chromatid exchange (SCE), and micronuclei (MN) tests in human lymphocytes cultured in vitro. Results The chromosome aberration, sister chromatid exchange or micronuclei tests showed that URE at concentrations of 10, 20, and 40 lag/mL had no clastogenic activity in human lymphocyte cell culture. Three doses of URE significantly decreased the number of chromosomal aberrations and the frequencies of SCE and MN when compared with the culture treated with MMC (P〈0.0001). Conclusion Although URE itself is not a clastogenic or cytotoxic substance, it possesses strong antigenotoxic, anti-clastogenic, and protective effects on MMC in vitro.
基金supported by the National Natural Science Foundation of China(51722103,52071231 and 51571149)the Natural Science Foundation of Tianjin City(19JCJQJC61900)。
文摘Atomically dispersed iron-nitrogen-carbon(Fe-N-C) catalysts have emerged as the most promising alternative to the expensive Pt-based catalysts for the oxygen reduction reaction(ORR) in proton exchange membrane fuel cells(PEMFCs),however suffer from low site density of active Fe-N4 moiety and limited mass transport during the catalytic reaction.To address these challenges,we report a three-dimensional(3D) metal-organic frameworks(MOF)-derived Fe-N-C single-atom catalyst.In this well-designed Fe-N-C catalyst,the micro-scale interconnected skeleton,the nano-scale ordered pores and the atomic-scale abundant carbon edge defects inside the skeleton significantly enhance the site density of active Fe-N4 moiety,thus improving the Fe utilization in the final catalyst.Moreover,the combination of the above mentioned micro-and nano-scale structures greatly facilitates the mass transport in the 3D Fe-N-C catalyst.Therefore,the multiscale engineered Fe-N-C single-atom catalyst achieves excellent ORR performance under acidic condition and affords a significantly enhanced current density and power density in PEMFC.Our findings may open new opportunities for the rational design of FeN-C catalysts through multiscale structural engineering.