期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tracial Limit of C^*-algebras 被引量:12
1
作者 ShanWenHU HuaXinLIN YiFengXUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第3期535-556,共22页
A new limit of C*-algebras, the tracial limit, is introduced in this paper. We show that a separable simple C*-algebra A is a tracial limit of C*-algebras in I^(k) if and only if A has tracial topological rank no more... A new limit of C*-algebras, the tracial limit, is introduced in this paper. We show that a separable simple C*-algebra A is a tracial limit of C*-algebras in I^(k) if and only if A has tracial topological rank no more than k. We present several known results using the notion of tracial limits. 展开更多
关键词 tracial limit tracial topological rank
原文传递
I^(k)中迹极限C~*-代数的注记
2
作者 范庆斋 童裕孙 《数学年刊(A辑)》 CSCD 北大核心 2008年第6期747-754,共8页
给出了I^(k)中迹极限C~*-代数的某些性质.特别地给出了I^(k)中迹极限C~*-代数的的几个等价定义.利用此结果,证明了如果A是单的有单位元的C~*-代数,并且A具有唯一的标准迹,A=(t_4)(?)(A_n,p_n),其中A_n∈I^(k),则A=(t_4)(?)(A_n、p_n),其... 给出了I^(k)中迹极限C~*-代数的某些性质.特别地给出了I^(k)中迹极限C~*-代数的的几个等价定义.利用此结果,证明了如果A是单的有单位元的C~*-代数,并且A具有唯一的标准迹,A=(t_4)(?)(A_n,p_n),其中A_n∈I^(k),则A=(t_4)(?)(A_n、p_n),其中A_n∈I(O).最后给出了I^(k)中迹极限C~*-代数的K_O-群的消去律性质. 展开更多
关键词 c*-代数 迹极限 迹拓扑秩
下载PDF
Simple generalized inductive limits of C^(*)-algebras
3
作者 Xuanlong Fu 《Science China Mathematics》 SCIE CSCD 2021年第5期1029-1044,共16页
We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self abs... We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero. 展开更多
关键词 c^(*)-algebras generalized inductive limit SIMPLIcITY approximately divisible tracial rank zero
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部