We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
Assume that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras, and that for a completely irrational noncommutative torus Aω of rank m there are a completely irration...Assume that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras, and that for a completely irrational noncommutative torus Aω of rank m there are a completely irrational noncommutative torus Aρ of rank m and a positive integer d such that tr(Aω) = tr(Aρ). It is proved that the set of all C*-algebras of sections of locally trivial C*-algebra bundles over S2 with fibres Aω. has a group structure, denoted by π1(Aut(Aω.)), which is isomorphic to Z if d > 1 and {0} if d > 1. Let Bcd be a cd-homogeneous C*-algebra over S2 x T2 of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torns Sρcd is defined by twisting C*(T2 x Zm-2) in Bcd C* (Z(m-2)) by a totally skew multiplier ρ on T2 x Z(m-2). It is shown that Sρcd Mp∞ is isomorphic to C(S2) C* (T2 x Zm-2, ρ) Mcd(C) Mp∞ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.展开更多
文摘We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi.
基金Project supported by the grant No. 1999-2-102-001-3 from the Interdisciplinary Research Program Year of the KOSEF
文摘Assume that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras, and that for a completely irrational noncommutative torus Aω of rank m there are a completely irrational noncommutative torus Aρ of rank m and a positive integer d such that tr(Aω) = tr(Aρ). It is proved that the set of all C*-algebras of sections of locally trivial C*-algebra bundles over S2 with fibres Aω. has a group structure, denoted by π1(Aut(Aω.)), which is isomorphic to Z if d > 1 and {0} if d > 1. Let Bcd be a cd-homogeneous C*-algebra over S2 x T2 of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torns Sρcd is defined by twisting C*(T2 x Zm-2) in Bcd C* (Z(m-2)) by a totally skew multiplier ρ on T2 x Z(m-2). It is shown that Sρcd Mp∞ is isomorphic to C(S2) C* (T2 x Zm-2, ρ) Mcd(C) Mp∞ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.