The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM),...The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.展开更多
To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s...To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.展开更多
The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of...The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of elements, determined throughEDS data, indicate the reduction in micro-segregation of elements compared with the previous reported literatures for laser weldedHastelloy C-276. High melting efficiency of ytterbium fiber laser, reduction in the amount of linear heat input, and high cooling rateof the mushy zone lead to the reduction in micro-segregation. The melting efficiency of ytterbium fiber laser for welding of HastelloyC-276 of 64% is higher than that (48%) of conventional welding methods. High melting efficiency leads to the reduction in the linearheat input required for welding. Hence, in the present investigation, the same was found to substantially reduce as compared to theprevious reported literature. The cooling rate from liquidus temperature to solidus temperature at the weld centerline was found to bein the order of 10^3℃/s. Cellular dendritic substructure that constituted for lower micro-segregation was formed at the weldcenterline.展开更多
Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed...Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed phases P and IX has been held responsible for the observed hot cracking. The present work investigated the possibility of suppressing the microsegregation in weldments by resorting to current pulse. Weldments were made by continuous current gas tungsten arc welding and pulsed current gas tungsten arc welding using ERNiCrMo-4 filler wire. The weld joints were studied with respect to microstructure, microsegregation, and mechanical properties. Optical microscopy and scanning electron microscopy were employed to study the microstructure. Energy-Dispersive X-ray Spectroscopy was carried out to evaluate the extent of microsegregation. Tensile testing was carried out to determine the strength and ductility. The results show that the joints fabricated with pulsed current gave rise to narrower welds with practically no heat affected zone, a refined microstructure in the fusion zone, reduced microsegregation, and superior combination of mechanical properties.展开更多
Preparation of the second-generation high-tem- perature superconducting tape by ion beam-assisted depo- sition (IBAD) requires a flat metal substrate. In this work, the electrochemical polishing of long-length Haste...Preparation of the second-generation high-tem- perature superconducting tape by ion beam-assisted depo- sition (IBAD) requires a flat metal substrate. In this work, the electrochemical polishing of long-length Hastelloy C-276 alloy was studied, and its process parameters, characterized roughness and other properties were inves- tigated. A 10-meter-long Hastelloy C-276 alloy was pre- pared by electrochemical polishing. The following optimized processing parameters are obtained: temperature of 45 ℃, current density of 0.439 A.cm-2 and polishing time of 60 s. The average roughness value (Ra) of the surface is less than 5 nm (5 μm × 5 μm), which was characterized by atomic force microscopy. This value sat- isfies the requirements for the further preparation of tran- sition-layer pair by the IBAD technology route.展开更多
基金supported by the National Basic Research Program of China (No. 2007CB209800)National Natural Science Foundation of China(Nos. 10775108, 11075119)the Fundamental Research Funds for the Central Universities (20102020201000013)
文摘The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose.
基金Project(ZZYJKT2018-06)supported by the State Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2019zzts525)supported by the Fundamental Research Funds for the Central Universities of Central South University of China。
文摘To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.
文摘The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of elements, determined throughEDS data, indicate the reduction in micro-segregation of elements compared with the previous reported literatures for laser weldedHastelloy C-276. High melting efficiency of ytterbium fiber laser, reduction in the amount of linear heat input, and high cooling rateof the mushy zone lead to the reduction in micro-segregation. The melting efficiency of ytterbium fiber laser for welding of HastelloyC-276 of 64% is higher than that (48%) of conventional welding methods. High melting efficiency leads to the reduction in the linearheat input required for welding. Hence, in the present investigation, the same was found to substantially reduce as compared to theprevious reported literature. The cooling rate from liquidus temperature to solidus temperature at the weld centerline was found to bein the order of 10^3℃/s. Cellular dendritic substructure that constituted for lower micro-segregation was formed at the weldcenterline.
基金supported by the Defence Research Development organization (DRDO) (No. ERIP/ ER/1103952/M/01/1403)Department of Science and Technology for the funding received from them under the FIST programme
文摘Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed phases P and IX has been held responsible for the observed hot cracking. The present work investigated the possibility of suppressing the microsegregation in weldments by resorting to current pulse. Weldments were made by continuous current gas tungsten arc welding and pulsed current gas tungsten arc welding using ERNiCrMo-4 filler wire. The weld joints were studied with respect to microstructure, microsegregation, and mechanical properties. Optical microscopy and scanning electron microscopy were employed to study the microstructure. Energy-Dispersive X-ray Spectroscopy was carried out to evaluate the extent of microsegregation. Tensile testing was carried out to determine the strength and ductility. The results show that the joints fabricated with pulsed current gave rise to narrower welds with practically no heat affected zone, a refined microstructure in the fusion zone, reduced microsegregation, and superior combination of mechanical properties.
基金financially supported by the National Science Foundation of China (Nos.51571002,51401003)the Beijing Municipal Natural Science Foundation (Nos.2172008,KZ201310005003)
文摘Preparation of the second-generation high-tem- perature superconducting tape by ion beam-assisted depo- sition (IBAD) requires a flat metal substrate. In this work, the electrochemical polishing of long-length Hastelloy C-276 alloy was studied, and its process parameters, characterized roughness and other properties were inves- tigated. A 10-meter-long Hastelloy C-276 alloy was pre- pared by electrochemical polishing. The following optimized processing parameters are obtained: temperature of 45 ℃, current density of 0.439 A.cm-2 and polishing time of 60 s. The average roughness value (Ra) of the surface is less than 5 nm (5 μm × 5 μm), which was characterized by atomic force microscopy. This value sat- isfies the requirements for the further preparation of tran- sition-layer pair by the IBAD technology route.