期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of an In-Situ Laser Machining System Using a Three-Dimensional Galvanometer Scanner 被引量:5
1
作者 Xiao Li Bin Liu +3 位作者 Xuesong Mei Wenjun Wang Xiaodong Wang Xun Li 《Engineering》 SCIE EI 2020年第1期68-76,共9页
In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur... In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs. 展开更多
关键词 In-situ laser machining three-dimensional galvanometer scanner Line structured light three-dimensional measurement
下载PDF
Wind dynamic environment and wind-sand erosion and deposition processes on different surfaces along the Dunhuang–Golmud railway,China 被引量:1
2
作者 ZHANG Hongxue ZHANG Kecun +1 位作者 AN Zhishan YU Yanping 《Journal of Arid Land》 SCIE CSCD 2023年第4期393-406,共14页
The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different... The Dunhuang–Golmud railway passes through different deserts in arid areas,especially drifting-sand desert and sandy-gravel Gobi.The near-surface wind environment and wind-sand transport process vary due to different external factors,such as topography,vegetation,and regional climate,resulting in evident spatial differences in surface erosion and deposition.Consequently,the measures for preventing wind-sand hazards will differ.However,the mechanism and control theory of sand damage remain poorly understood.In this study,we used meteorological observation,three-dimensional(3D)laser scanning,and grain-size analysis to compare and evaluate the spatial distribution of wind conditions,sand erosion and deposition patterns,and grain composition in the drifting-sand desert and sandy-gravel Gobi along the Dunhuang–Golmud railway in China.Results show that the annual mean wind speed,the frequency of sand-driving wind,and the drift potential of sandy-gravel Gobi are higher than those of drifting-sand desert,indicating a greater wind strength in the sandy-gravel Gobi,which exhibits spatial heterogeneity in wind conditions.The major sediment components in sandy-gravel Gobi are very fine sand,fine sand,and medium sand,and that in drifting-sand desert are very fine sand and fine sand.We found that the sediment in the sandy-gravel Gobi is coarser than that in the drifting-sand desert based on mean grain size and sediment component.The spatial distributions of sand erosion and deposition in the sandy-gravel Gobi and drifting-sand desert are consistent,with sand deposition mainly on the west side of the railway and sand erosion on the east side of the railway.The area of sand deposition in the drifting-sand desert accounts for 75.83%of the total area,with a mean deposition thickness of 0.032 m;while the area of sand deposition in the sandy-gravel Gobi accounts for 65.31%of the total area,with a mean deposition thickness of 0.028 m,indicating greater deposition amounts in the drifting-sand desert due to the presence of more fine sediment components.However,the sand deposition is more concentrated with a greater thickness on the embankment and track in the sandy-gravel Gobi and is dispersed with a uniform thickness in the drifting-sand desert.The sand deposition on the track of the sandy-gravel Gobi mainly comes from the east side of the railway.The results of this study are helpful in developing the preventive measures and determining appropriate selection and layout measures for sand control. 展开更多
关键词 surface erosion and deposition wind environment three-dimensional(3D)laser scanner drift potential grain-size characteristic Dunhuang–Golmud railway
下载PDF
A shortcut to marking 3D target curves on curved surface via a galvanometric laser scanner 被引量:2
3
作者 Junchao TU Mingang WANG Liyan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1555-1563,共9页
Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assemb... Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner(GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures,the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network(SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects. 展开更多
关键词 Calibration FABRIC PREPREG PLACEMENT laser materials processing laser scanner three-dimensional laser MARKING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部