To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accura...To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.展开更多
The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision o...The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.展开更多
基金The National Natural Science Foundation of China under contract No.61471024the National Marine Technology Program for Public Welfare under contract No.201505002-1the Beijing Higher Education Young Elite Teacher Project under contract No.YETP0514
文摘To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.
文摘The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.