期刊文献+
共找到757篇文章
< 1 2 38 >
每页显示 20 50 100
C-H bond activation of propane on Ga_(2)O_(2)^(2+) in Ga/H-ZSM-5 and its mechanistic implications
1
作者 Zhaoqi Zhao Yunzhu Zhong +1 位作者 Xiaoxia Chang Bingjun Xu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期32-43,共12页
Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified ... Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW. 展开更多
关键词 Propane dehydrogenation Ga_(2)O_(2)^(2+) activation of C-H bond Ga species
下载PDF
Palladium-Catalyzed C-C Bond Activation/Suzuki Reaction of Methylenecyclobutanes 被引量:3
2
作者 Xiao-Bing Chen Li Li +5 位作者 Wan-Chun Yang Kun-Long Song Bin Wu Wan-Er Gan Jian Cao Li-Wen Xu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第6期1611-1615,共5页
Transition-metal catalyzed C-C bond activation is a formidable challenge owing to the high bond energy.We report here a novel palladium-catalyzed C-C bond activation manner of methylenecyclobutanes followed by subsequ... Transition-metal catalyzed C-C bond activation is a formidable challenge owing to the high bond energy.We report here a novel palladium-catalyzed C-C bond activation manner of methylenecyclobutanes followed by subsequent Suzuki cross-coupling reaction affording multisubstituted indanes.The tandem reaction process involves intramolecular carbopalladation of double bond,β-carbon elimination and intermolecular trapping of the transient a-alkylpalladium complex with boronic acids.A new TADDOL-derived phos-phoramidite ligand bearing fluorine and silicon-based bulky groups is found to be efficient for C-C bond activation of methylenecyclobutanes. 展开更多
关键词 c-c activation PALLADIUM c-c coupling RING-OPENING Methylenecyclobutanes
原文传递
Diastereodivergent[4+2]annulation of biphenylenes with enones via nickel(0)-catalyzed C-C bond activation
3
作者 Junyan Chen Dachang Bai +2 位作者 Xiuli Guo Yiyao Wang Xingwei Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第12期5056-5060,共5页
Ni(0)-catalyzed regio-and diastereodivergent[4+2]annulation of biphenylenes withα,βunsaturated ketones is described.This solvent-controlled diastereodivergent reaction integrates C-C bond cleavage of biphenylene and... Ni(0)-catalyzed regio-and diastereodivergent[4+2]annulation of biphenylenes withα,βunsaturated ketones is described.This solvent-controlled diastereodivergent reaction integrates C-C bond cleavage of biphenylene and C=C double bond insertion selectivity,offering a mild approach to all possible diastereoisomers of 9,10-dihydrophenanthrene derivatives from the same starting materials. 展开更多
关键词 NICKEL ENONES Biphenylenes Diastereodivergent annulation c-c activation 9 10-Dihydrophenanthrenes
原文传递
Competition between C-C and C-H Activation in Reactions of Neutral Nickel Atom with Cycloalkanes (n = 3-7)
4
作者 杨静 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第1期122-134,共13页
A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, t... A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7). 展开更多
关键词 reaction mechanism C-H bond activation c-c bond activation cycioalkanes nickel atom
下载PDF
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation 被引量:1
5
作者 Di Meng Qian Zhu +5 位作者 Yan Wei Shengli Zhen Ran Duana Chuncheng Chen Wenjing Song Jincai Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1474-1479,共6页
A straightforward protocol using readily available aromatic amines,N,N,N',N'-tetramethyl-p-phenylenediamine or N,N,N',N'-tetramethylbenzidine,as photocatalysts was developed for theefficient hydrodehal... A straightforward protocol using readily available aromatic amines,N,N,N',N'-tetramethyl-p-phenylenediamine or N,N,N',N'-tetramethylbenzidine,as photocatalysts was developed for theefficient hydrodehalogenation of organic halides,such as 4'-bromoacetophenone,polyfluoroarenes,cholorobenzene,and 2,2',4,4'-tetrabromodiphenyl ether(a resistant and persistent organic pollu-tant).The strongly reducing singlet excited states of the amines enabled diffusion-controlled disso-ciative electron transfer to effectively cleave carbon-halogen bonds,followed by radical hydrogena-tion.Diisopropylethylamine served as the terminal electron/proton donor and regenerated theamine sensitizers. 展开更多
关键词 Carbon-halogen bond activation Photocatalysis Halogenated organic pollutants Reductive dehalogenation Environmental remediation
下载PDF
A Mechanistic Switch in C-H Bond Activation by Elusive Fe^(V)(O)(TAML)Reaction Intermediate:A Theoretical Study 被引量:1
6
作者 Anran Zhou Zhiqiang Fu +2 位作者 Xuanyu Cao Yufen Zhao Yong Wang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第2期383-389,I0032-I0064,I0004,共41页
The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta’s experiment was mechanistically studied herein by means of density functional theory calc... The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta’s experiment was mechanistically studied herein by means of density functional theory calculations.Our calculations reveal that such difference is caused by different reaction mechanisms between two kinds of substrates(the aliphatic cyclohexane,2,3-dimethylbutane and the aromatic toluene,ethylbenzene and cumene).For the aliphatic substrates,C-H oxidation by the oxidant Fe^(V)(O)(TAML)is a hydrogen atom transfer process;whereas for the aromatic substrates,C-H oxidation is a proton-coupled electron transfer(PCET)process with a proton transfer character on the transition state,that is,a proton-coupled electron transfer process holding a proton transfer-like transition state(PCET(PT)).This difference is caused by the strongπ-πinteractions between the tetra-anionic TAML ring and the phenyl ring of the aromatic substrates,which has a“pull”effect to make the electron transfer from substrates to the Fe=O moiety inefficient. 展开更多
关键词 C-H bond activation Hydrogen atom transfer Proton coupled electron transfer Density functional theory
下载PDF
Copper-Catalyzed C-C(O)C Bond Cleavage of Monoalkylated β-Diketone: Synthesis of α,β-Unsaturated Ketones
7
作者 Tony Wheellyam Pouambeka Victor N’goka +3 位作者 Narcisse Nicaise Obaya Guy Crépin Enoua Hubert Makomo Qian Zhan 《International Journal of Organic Chemistry》 2023年第2期41-49,共9页
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m... A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. . 展开更多
关键词 Monoalkylated β-diketone α β-Unsaturated Ketones COPPER-CATALYZED c-c(O)C bond Cleavage
下载PDF
Synthesizing active and durable cubic ceria catalysts(<6 nm)for fast dehydrogenation of bio-polyols to carboxylic acids coproducing green H_(2)
8
作者 Mengyuan Liu Puhua Sun +3 位作者 Guangyu Zhang Xin Jin Chaohe Yang Honghong Shan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期529-543,共15页
Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large partic... Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications. 展开更多
关键词 Cubic ceria Oxygen vacancy DEHYDROGENATION C-H bond activation
下载PDF
Density Functional Studies of the Reaction of Ytterbium Monocation with Fluoromethane:C-F Bond Activation and Electron-Transfer Reactivity
9
作者 Dong Ju ZHANG Cheng Bu LIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第4期359-362,共4页
The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare la... The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare lanthanide cations, have been investigated for the first time by using density functional theory. A direct fluorine abstraction mechanism was revealed, and the related thermochemistry data were determined. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behavior on the transition state region was shown. The present results support the reaction mechanism inferred from early experimental data and the related thermochemistry data can provide a guide for further experimental researches. 展开更多
关键词 C-F bond activation electron transfer ytterbium monocation fluoromethane DFT
下载PDF
Photocatalytic C-H Bonds Activation:Ambient Carbonylation of Cyclohexane by Co(acac)_2 Under Ultraviolet Irradiation
10
作者 Da Bin GAo Jing Mei YIN +1 位作者 Ming GUO Yuan YU(Departemnt of Chemistry & Chemical Engineering, Dalian University, Dalian 116622)Yong An MA(National Marine Environmental Monitoring Center, Institute of Marine Environmental Protection, State Oceanic Administrat 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第9期763-764,共2页
A high turnover number was achieved in the photocatalytic carbonylation of C - H bonds of cyclohexane catalyzed by Co (acac)2 under ambient conditions (1 atm,25℃) to give mainly cyclohexanecarboxaldehyde.
关键词 acac Photocatalytic C-H bonds activation Under Ultraviolet Irradiation
下载PDF
Selective activation of C-C bonds in lignin model compounds and lignin for production of value-added chemicals
11
作者 Long Cheng Shanyong Wang +4 位作者 Hailong Lu Jun Ye Junming Xu Kui Wang Jianchun Jiang 《Journal of Bioresources and Bioproducts》 EI 2024年第4期433-464,共32页
Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units co... Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by C-O bond and C-C bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of C-O converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for C-C bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on C-C bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of C-C bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized. 展开更多
关键词 Biomass Lignin c-c bond Aromatic compounds
原文传递
The Effect of Elevated Temperature on Bond Performance of Alkali-activated GGBFS Paste 被引量:2
12
作者 郑文忠 朱晶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期721-725,共5页
The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali... The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali-activated GGBFS paste as a construction adhesive after exposure to 20-500℃. Through XRD analysis, a few calcium silicate hydrate, hydrotalcite and tetracalcium aluminate hydrate were determined as end products, and they were filled and packed each other at room temperature. In addition, akermanite dramatically increased at 800 ~C and above. The two key parameters, the ultimate load Pu.T and effective bond length Le, were determined using test data of carbon fiber-reinforced polymer (CFRP)-to-concrete bonded joints at elevated temperature. The experimental results indicate that the ultimate load Pu.T remains relatively stable initially and then decreases with increasing temperature. The effective bond length Le increases with increasing temperature except at 300℃. The proposed temperature-dependent effective bond length formula is shown to closely represent the test data. 展开更多
关键词 alkali-activated GGBFS paste MICROSTRUCTURE bond effective bond length elevatedtemperature
下载PDF
Biphasical Force-Dependent CD40 L Ligation-Induced Activation of Integrin α5β1 under Flows
13
作者 Xiaoyan Jiang Jingjing Feng +1 位作者 Ying Fang Jianhua Wu 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期158-158,共1页
As a key regulator of immune response,CD40 L is usually associated with chronic disease-related inflammation,autoimmune diseases and malignant diseases.Receptor recognition of platelet CD40 L is the initial event that... As a key regulator of immune response,CD40 L is usually associated with chronic disease-related inflammation,autoimmune diseases and malignant diseases.Receptor recognition of platelet CD40 L is the initial event that mediates platelet aggregation and leukocyte immune response.Unlike soluble CD40 L,the interaction between transmembrane platelet CD40 L and its receptors occurs within the cell junction surface,usually,in a physiological and pathological high blood flow shear stress environment.This two-dimensional reaction kinetics should be a mechano-chemical coupling process.In addition to its classical receptor CD40,CD40 L also binds to receptorα5β1,CD40 L can bind to the resting state of integrinα5β1,but the mechanical regulation mechanism of integrinα5β1 activation under fluid shear stress remains unclear.We assume that the force can promote CD40 L-inducedα5β1 activation.To check this hypothesis,we performed flow chamber experiment to investigate interaction of CD40 L andα5β1.In experiments,the bottom of the flow chamber is functionalized by a suitable concentration of CD40 L,and the fiber spheres of 6μm diameter was coated withα5β1.The selection of CD40 L concentration was based on the observation that as many tether events ofα5β1-coated spheres as possible were observed rather than stable adhesion events of these spheres.Theα5β1-coated sphere suspension was poured over the CD40 L-coated substrates in the flow chamber under different shear rates.A high-speed camera was used to observe and record tether events of fiber spheres at a rate of 100 frames per second.According to our affinity state transition model for integrin,the data were analyzed to obtain the rate of integrin activation and its mechanical regulation characteristics.Our results demonstrated that the interaction betweenα5β1 and CD40 L is biphasic force-dependent,showing mechano-chemical regulation mechanism of'Catch-slip bond'transition.The affinity jumping model was well fitted with the data obtained from flow chamber experiment at various wall shear stresses.We found that,CD40 L ligation-induced jumping ofα5β1 affinity state from low to medium(or high)one will occur within 0.5-1.0 second,resulting in prolonging of bond lifetimes.And,frequency distribution of the tether events number with tether lifetime under each force,exhibits obvious doublet peaks,one within 0.5-1 s and second within 1.5-2.5 s,indicating theα5β1 affinity state transform from low to high one.The probability distribution of the tether lifetime under different shear forces are not linear,and exists a turning point,which shows that the rate ofα5β1 dissociation from CD40 L is fast first,and then become slow,showing a force-induced conformation transformation of the integrinα5β1 from low affinity state to high affinity one.Our findings suggest that,the continuous force stimulation will quickly cause the affinity state change of integrinα5β1. The dissociation rate of theα5β1/CD40 L complex decreases first and then increases with wall shear stress,exhibiting a'Catch-slip bond'transformation of interaction betweenα5β1-CD40 L.This mechanical regulation mechanism exists in interaction of CD40 L not only toα5β1 at low affinity state but also to one at high affinity state.Our results should be useful in understanding the mechanical regulation mechanism of a5β1-CD40 L interaction-mediated cellular immune response and inflammatory processes. 展开更多
关键词 INTEGRIN activation α5β-CD40 L flow CHAMBER CATCH bond MECHANOCHEMICAL coupling
下载PDF
High Activated Mineral Admixture Slurry Made by Wet-discharged Fly-ash Promoted by Matrix Bonding Component
14
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期826-829,共4页
The mineral admixture slurry was made by wet-discharged fly-ash (WDFA) promoted by matrix bonding component (MBC), and the strengths, hydration products change (XRD, SEM) of cement paste made by the slurry were ... The mineral admixture slurry was made by wet-discharged fly-ash (WDFA) promoted by matrix bonding component (MBC), and the strengths, hydration products change (XRD, SEM) of cement paste made by the slurry were studied. The results indicate that in the process of wet-milling preparation, there is a prime proportion (70︰30) between wet-discharged fly-ash and matrix bonding component in the slurry. The physical activation of wet-milling and chemical activation of modified agents accelerate the hydration of cement including the cement and mineral which has not hydrated completely in the matrix bonding component. And the hydrated part of matrix bonding component can play the function of inducing crystallization, which can accelerate secondary hydration reaction of fly-ash. 展开更多
关键词 matrix bonding component wet-milling SLURRY activation
下载PDF
STUDIES OF QUANTUM CHEMISTRY CALCULATION ON VALENCE-BOND STRUCTURE AND HYDRATION ACTIVTY OF C_(12)A_7
15
作者 丁庆军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1998年第2期44-48,共5页
The structure, chemical bonds and hydra-tion activity of C12A were studied by SCC-DV-Xa method of computational quantum chemistry. The calculated results show that Ca-O bond will be first broken off when C12A hydrates... The structure, chemical bonds and hydra-tion activity of C12A were studied by SCC-DV-Xa method of computational quantum chemistry. The calculated results show that Ca-O bond will be first broken off when C12A hydrates, the reactivity of Al(2)O4 tetrahedron is superior to that of Al(1)O4 tet, thedron and the rupture of the Al-O-Al chain composed of two types of AlO4 tetrahedra under the action of water lies in the very weak Al(2)-O(2) bonds. the Al-O bond strength of C12A7 is between C3A and C11A7·CaF2. 展开更多
关键词 C12A7 STRUCTURE chemical bond hydration activity quantum chemistry calculation
下载PDF
Study on Synthesis and Herbicidal Activity of Heterocyclic Compounds Containing P-P Bond
16
作者 He Liangnian Zhuo Renxi +1 位作者 Cai Lei Lu Alhong 《Wuhan University Journal of Natural Sciences》 EI CAS 1998年第1期126-128,共3页
N,N′-diphenylurea reacted with phosphorus trichloride and phenyl dichlorophosphane giving the heterocyclic compounds 1 and 2 with a direct phosphorus-phosphorus bond (P-P bond), respectively. The new compounds were c... N,N′-diphenylurea reacted with phosphorus trichloride and phenyl dichlorophosphane giving the heterocyclic compounds 1 and 2 with a direct phosphorus-phosphorus bond (P-P bond), respectively. The new compounds were characterized by elementary analysis, NMR and IR spectra. The results of preliminary bioassay showed that these heterocycles possess selective herbicidal activity at 1.5 kg/hm2. 展开更多
关键词 heterocycle containing P-P bond SYNTHESIS herbicidal activity
下载PDF
The Novel Selective Reduction of the C-C Triple Bond
17
作者 Gu, WX Wu, AX Pan, XF 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第10期847-848,共2页
A novel reduction system is reported here in which the compounds with terminal C-C triple bond and disubstituted C-C triple bond react with NaBH4/Pd(PPh3)(4) in a base condition and only terminal C-C triple bond is re... A novel reduction system is reported here in which the compounds with terminal C-C triple bond and disubstituted C-C triple bond react with NaBH4/Pd(PPh3)(4) in a base condition and only terminal C-C triple bond is reduced. 展开更多
关键词 selective reduction c-c triple bond Pd(PPh3)(4)
下载PDF
Structural and electronic effects boosting Ni-doped Mo_(2)C catalyst toward high-efficiency C-O/C-C bonds cleavage
18
作者 Xiangze Du Jinjia Liu +10 位作者 Dan Li Hui Xin Xiaomei Lei Rui Zhang Linyuan Zhou Huiru Yang Yan Zeng Hualong Zhang Wentao Zheng Xiaodong Wen Changwei Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期109-116,I0004,共9页
The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-... The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage. 展开更多
关键词 Ni-doped Mo_(2)C Palmitic acid HYDRODEOXYGENATION C-O/c-c bond cleavages BIOFUEL
下载PDF
Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-OMe
19
作者 Mu-Zhen Li Fei-Yan Li +5 位作者 Qun Zhang Kai Zhang Yu-Zhi Song Jian-Zhong Fan Chuan-Kui Wang Li-Li Lin 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期378-384,共7页
Thermally activated delayed fluorescence(TADF)molecules have attracted great attention as high efficient luminescent materials.Most of TADF molecules possess small energy gap between the first singlet excited state(S_... Thermally activated delayed fluorescence(TADF)molecules have attracted great attention as high efficient luminescent materials.Most of TADF molecules possess small energy gap between the first singlet excited state(S_(1))and the first triplet excited state(T_(1))to favor the up-conversion from T_(1)to S_(1).In this paper,a new TADF generation mechanism is revealed based on theoretical simulation.By systematic study of the light-emitting properties of SOBF-OMe in both toluene and in aggregation state,we find that the single SOBF-OMe could not realize TADF emission due to large energy gap as well as small up-conversion rates between S_(1)and T_(1).Through analysis of dimers,we find that dimers with intermolecular hydrogen bond(H-bond)are responsible for the generation of TADF,since smaller energy gap between S_(1)and T_(1)is found and the emission wavelength is in good agreement with experimental counterpart.The emission properties of SOBF-H are also studied for comparison,which reflect the important role of H-bond.Our theoretical results agree ith experimental results well and confirm the mechanism of H-bond induced TADF. 展开更多
关键词 organic light-emitting diodes thermally activated delayed fluorescence intermolecular hydrogen bond decay rates
下载PDF
Theoretical Study on the C-H Activation in Decarbonylation of Acetaldehyde by NiL_2(L=SO_3CH_3) Using Density Functional Theory
20
作者 刘红飞 JIA Tiekun MIN Xinmin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1170-1172,共3页
Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the react... Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde. 展开更多
关键词 density functional theory decarbonylation transition state energy c-c activation
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部