This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h...This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
The purpose of this paper is to apply the theoretical model developed in References [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310032003700320039003100350035000000 -[6] 08D0C9EA7...The purpose of this paper is to apply the theoretical model developed in References [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310032003700320039003100350035000000 -[6] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310032003700320039003100360030000000 in order to analyze the geometrically nonlinear free dynamic response of C-C-SS-SS rectangular CFRP symmetrically laminated plates so as to investigate the effect of nonlinearity on the nonlinear resonance frequencies, the nonlinear fundamental mode shape and associated bending stress patterns at large vibration amplitudes. Various values of the plate aspect ratio and the amplitude of vibrations will be considered, and useful numerical data also are provided.展开更多
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on class...This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching-bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force f...An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.展开更多
A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introdu...A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the tap and bottom surfaces were established. In particular, for the free vibration ( stability) problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of same parameters are discussed.展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin pl...The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.展开更多
In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates w...In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.展开更多
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration ...A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.展开更多
A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introdu...A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.展开更多
A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural fr...A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.展开更多
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-para...Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.展开更多
On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonline...On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro partial differential equations is first presented by means of a structural function introduced in this paper. Then, by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro partial differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.展开更多
Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved ...Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.展开更多
A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simpl...A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
Full-range analysis for the buckling and post buck ling at rectangular plates under in-plane compression has been made by perturbation technique which takes deflection as its perturbation parameter.In this paper the e...Full-range analysis for the buckling and post buck ling at rectangular plates under in-plane compression has been made by perturbation technique which takes deflection as its perturbation parameter.In this paper the effects of initial geometric imperfection on the postbuc kling behavior of plates have been discussed. It is seen that the effect of initial imperfection on the inelastic postbuckling oj plates is sensitive. By comparison, it is found that the theoretical results of this paper are in good agreement with experiments.展开更多
The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition prin...The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition principle and continuum damage mechanics, the nonlinear dynamic equations in terms of the mid_plane displacements for the viscoelastic thin plates with damage effect were derived. By adopting the finite difference method and Newmark method, these equations were solved. The results were compared with the available data. In the numerical calculations, the effects of the external loading parameters and geometric dimensions of the plate on the nonlinear dynamic responses of the plate were discussed. Research results show that the nonlinear dynamic response of the structure will change remarkably when the damage effect is considered.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Nos.52201345,and 52001293)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
文摘The purpose of this paper is to apply the theoretical model developed in References [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310032003700320039003100350035000000 -[6] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310032003700320039003100360030000000 in order to analyze the geometrically nonlinear free dynamic response of C-C-SS-SS rectangular CFRP symmetrically laminated plates so as to investigate the effect of nonlinearity on the nonlinear resonance frequencies, the nonlinear fundamental mode shape and associated bending stress patterns at large vibration amplitudes. Various values of the plate aspect ratio and the amplitude of vibrations will be considered, and useful numerical data also are provided.
基金supported by the National Natural Science Foundation of China (Grants 11172028, 1372021)Research Fund for the Doctoral Program of Higher Education of China (Grant 20131102110039)the Innovation Foundation of Beihang University for PhD graduates
文摘This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching-bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金Project supported by the National Natural Sciences Fund of China(Nos.10302009 and 10672070)the Natural Sciences Fund of Gansu Province(3ZS051-A25-012)the Excellent Doctors' Fund of Lanzhou University
文摘An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
文摘A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the tap and bottom surfaces were established. In particular, for the free vibration ( stability) problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of same parameters are discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(2022AH040045)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(2021-YF22).
文摘The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.
文摘In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.
基金Project supported by the National Natural Science Foundation of China(No.11202190)the Natural Science Foundation for Young Scientists of Shanxi Province of China(No.201801D221037)the China Postdoctoral Science Foundation(No.2018M640373)
文摘A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.
文摘A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three_dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems. For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability) problem, it is found that there exist two independent classes: One corresponds to the pure in_plane vibration (stability) and the other to the general bending vibration (stability). Numerical examples are finally presented and the effects of some parameters are discussed.
文摘A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.
基金国家自然科学基金,Technology Item of Ministry of Communications of China
文摘Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.
文摘On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro partial differential equations is first presented by means of a structural function introduced in this paper. Then, by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro partial differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.
基金support of this work by the National Natural Science Foundation of China(No.51405096)the Fundamental Research Funds for the Central Universities(HEUCF210710).
文摘Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.
文摘A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
文摘Full-range analysis for the buckling and post buck ling at rectangular plates under in-plane compression has been made by perturbation technique which takes deflection as its perturbation parameter.In this paper the effects of initial geometric imperfection on the postbuc kling behavior of plates have been discussed. It is seen that the effect of initial imperfection on the inelastic postbuckling oj plates is sensitive. By comparison, it is found that the theoretical results of this paper are in good agreement with experiments.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 2 72 0 2 4)
文摘The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition principle and continuum damage mechanics, the nonlinear dynamic equations in terms of the mid_plane displacements for the viscoelastic thin plates with damage effect were derived. By adopting the finite difference method and Newmark method, these equations were solved. The results were compared with the available data. In the numerical calculations, the effects of the external loading parameters and geometric dimensions of the plate on the nonlinear dynamic responses of the plate were discussed. Research results show that the nonlinear dynamic response of the structure will change remarkably when the damage effect is considered.