Unprecedented divergent synthesis of gem-difluorovinylacetic acid and glutaric acid derivatives fromα-CF_(3)alkenes with formate as the carbonyl source was disclosed.The reaction can undergo selective mono-or triple ...Unprecedented divergent synthesis of gem-difluorovinylacetic acid and glutaric acid derivatives fromα-CF_(3)alkenes with formate as the carbonyl source was disclosed.The reaction can undergo selective mono-or triple C-F bond cleavage by simply switching the photocatalyst and hydrogen atom transfer(HAT)catalyst under visible-light-induced conditions at room temperature.Foramte acts as both the C1 source and the reductant through the generation of CO_(2)^(·-)species,which underwent Giese radical addition to electron-deficient alkenes to trigger the consecutive C-F bond cleavage and carboxylation process.展开更多
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon...Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.展开更多
The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C b...The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.展开更多
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m...A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .展开更多
The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation resul...The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.展开更多
As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4...As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4-glycosidic bonds,still remains challenging.Here,we report a novel method for oxidative cleavage of the glycosidic bonds by free radicals.Probed by the cellobiose reaction,it was found that·OH radicals,generated from the decomposition of H2O2 catalyzed by CuSO4 or CuO/SiO2,were efficient for selective conversion of cellobiose to glucose and gluconic acid at a low temperature of 333 K,and their selectivities reached 30.0%and 34.6%,respectively,at 23.4%cellobiose conversion.Other radicals,such as·SO4?,also exhibited high efficacy in the cellobiose reaction.Mechanistic studies suggest that the oxidative cleavage of theβ-1,4-glycosidic bond by the free radicals involve formation of the carbon radical intermediate via abstraction of the H atom dominantly at the C1 position.Following this oxidative mechanism,treatment of microcrystalline cellulose with·OH by impregnation with H2O2 and CuSO4 catalyst at 343 K led to significant enhancement in its hydrolysis efficiency.These results demonstrate the effectiveness of this new method in the oxidative cleavage of glycosidic bonds,and its viability for the efficient depolymerization of cellulose at low temperatures,which can be further improved,for example,by exploring new free radicals and optimizing their reactivity and selectivity.展开更多
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ...In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.展开更多
A mixture of hypophosphorous acid (H3PO2) and iodine in acetic acid can cleave the N-alkyl bond in a variety of N-1 substituted pyrimidine derivative in relatively high yields, without any damage to the amido bond in ...A mixture of hypophosphorous acid (H3PO2) and iodine in acetic acid can cleave the N-alkyl bond in a variety of N-1 substituted pyrimidine derivative in relatively high yields, without any damage to the amido bond in the non-nucleosides pyrimidine base skeleton.展开更多
The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-...The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage.展开更多
A new type of Cope rearrangement involving carbon-carbon bond cleavage (or de-tbutylation) was found during the heating of 4-allyl-4-methyl-2, 6-di-t-butylsemiquinone,
Seven unsymmetrical diaminodimethylsilanes were prepared. The reactions of these silylamine with benzoyl chloride indicated that in comparison with electronic, the steric effect played more important role on the react...Seven unsymmetrical diaminodimethylsilanes were prepared. The reactions of these silylamine with benzoyl chloride indicated that in comparison with electronic, the steric effect played more important role on the reactivity of Si-N bond. As a new method, unsymmetrical diamide can produced by the reaction of the title compounds with diacid chloride.展开更多
The electrochemical reduction of alkylaquabis (dimethylglyoximato)Cobalt(Ⅲ) in the absence and presence of β-Cyclodextrin (β-CD) was inveingated by means of cylic voltammetry. It was found that β-CD facilitates th...The electrochemical reduction of alkylaquabis (dimethylglyoximato)Cobalt(Ⅲ) in the absence and presence of β-Cyclodextrin (β-CD) was inveingated by means of cylic voltammetry. It was found that β-CD facilitates the cleavage of Co-C bond during the reduchon process.展开更多
The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of t...The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of the ligand was performed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, elemental analysis and single crystal X-ray diffraction. The ligand, (1), possesses a disulfide –S–S– bridge of 2.1121 (3) ? length, and the molecule adopts a cis-conformation around this bond. In the crystal structure of (1), an intramolecular O–H···N hydrogen bond with D… A distance of 2.69 (3) ? was present. The reaction of (1) with Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and CuCl<sub>2</sub>·2H<sub>2</sub>O in methanol afforded the corresponding metal complexes. The obtained solids were further investigated by elemental analysis and UV-Vis titration that confirmed the formation of [CoL] and [ClCuHL] complexes. However, recrystallizaion of the Co(II) complex in dimethylsulfoxide caused the complete hydrolysis of the imine bond and afforded a Co(II) complex in which two 5-nitro-salicylaldehyde and two DMSO molecules were coordinated to the central metal in an octahedral fashion. This structure (2) was also confirmed by single crystal X-ray analysis.展开更多
The use of functional materials such as carbon-bismuth oxyhalides in integrated photorefineries for the clean production of fine chemicals requires restructuring.A facile biomass-assisted solvothermal fabrication of c...The use of functional materials such as carbon-bismuth oxyhalides in integrated photorefineries for the clean production of fine chemicals requires restructuring.A facile biomass-assisted solvothermal fabrication of carbon/bismuth oxychloride nanocomposites(C/BiOCl)was achieved at various temperatures.Compared with BiOCl and C/BiOCl-120,C/BiOCl-180 exhibited higher crystallinity,wider visible light absorption,and a faster migration/separation rate of photoinduced carriers.For the selective C–C bond cleavage of biomass-based feedstocks photocatalyzed by C/BiOCl-180,the xylose conversion and lactic acid yield were 100%and 92.5%,respectively.C/BiOCl-180 efficiently converted different biomass-based monosaccharides to lactic acid,and the efficiency of pentoses was higher than that of hexoses.Moreover,lactic acid synthesis was favored by all active radicals including superoxide ion(·O_(2)^(−)),holes(h^(+)),hydroxyl radical(·OH),and singlet oxygen(^(1)O_(2)),with·O_(2)^(−)playing a key role.The fabricated photocatalyst was stable,economical,and recyclable.The use of biomass-derived monosaccharides for the clean production of lactic acid via the C/BiOCl-180 photocatalyst has opened new research horizons for the investigation and application of C–C bond cleavage in biomass-based feedstocks.展开更多
Improving the complete ethanol electrooxidation on Pd-based catalysts in alkaline media has drawn widely attention due to the high mass energy density.However,the weak adsorption energy of CH_(3)CO^(*) on Pd restricts...Improving the complete ethanol electrooxidation on Pd-based catalysts in alkaline media has drawn widely attention due to the high mass energy density.However,the weak adsorption energy of CH_(3)CO^(*) on Pd restricts the C–C bond cleavage.Inspired by the molecular orbital theory,we proposed the d-state-editing strategy to construct more unoccupied d-states of Pd for the enhanced interaction with CH_(3)CO^(*) to break C–C bonds.As expected,the reduced number of e_g electrons and more unoccupied d-states of Pd successfully formed on as-prepared porous Rh Au–Pd Cu nanosheets(PNSs).Theoretical calculations show that the optimized d-states of Rh Au–Pd Cu PNS can effectively improve the adsorption of CH_(3)CO^(*) and drastically reduce the energy barrier of C–C bond cleavage,thus boosting the complete oxidation of ethanol.The charge ratio of C_1 pathway on Rh Au–Pd Cu PNSs is 51.5%,more than 2 times higher than that of Pd NSs.Our finding provides an innovative perspective for the design of highly-efficient noble-based electrocatalysts.展开更多
The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare la...The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare lanthanide cations, have been investigated for the first time by using density functional theory. A direct fluorine abstraction mechanism was revealed, and the related thermochemistry data were determined. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behavior on the transition state region was shown. The present results support the reaction mechanism inferred from early experimental data and the related thermochemistry data can provide a guide for further experimental researches.展开更多
Anisotropic surface broken bond densities of six different surfaces of calcite and three surfaces of fluorite were calculated. In terms of the calculated results, the commonly exposed surfaces of the two minerals were...Anisotropic surface broken bond densities of six different surfaces of calcite and three surfaces of fluorite were calculated. In terms of the calculated results, the commonly exposed surfaces of the two minerals were predicted and the relations between surface broken bonds densities and surface energies were analyzed. Then the anisotropic wettability of the commonly exposed surfaces was studied by means of contact angle measurement. The calculation results show that the (101^-4), (213^-4)and (01 1^-8)surfaces for calcite and (111) for fluorite are the most commonly exposed surfaces and there is a good rectilinear relation between surface broken bond density and surface energy with correlation of determination (R^2) of 0.9613 and 0.9969, respectively. The anisotropic wettability of different surfaces after immersing in distilled water and sodium oleate solutions at different concentrations can be explained by anisotropic surface broken bond densities and active Ca sites densities, respectively.展开更多
基金supported by the National Natural Science Foundation of China(22001224)the Natural Science Foundation of Jiangsu Province(BK20201014,BK20200106)+2 种基金the Start-up Funding provided by Xuzhou Medical Universityalso supported by the Jiangsu Specially-Appointed Professor Program(Xu Zhu)Jiangsu Province Shuangchuang PhD Program(Pei Xu,JSSCBS20211267)。
文摘Unprecedented divergent synthesis of gem-difluorovinylacetic acid and glutaric acid derivatives fromα-CF_(3)alkenes with formate as the carbonyl source was disclosed.The reaction can undergo selective mono-or triple C-F bond cleavage by simply switching the photocatalyst and hydrogen atom transfer(HAT)catalyst under visible-light-induced conditions at room temperature.Foramte acts as both the C1 source and the reductant through the generation of CO_(2)^(·-)species,which underwent Giese radical addition to electron-deficient alkenes to trigger the consecutive C-F bond cleavage and carboxylation process.
基金financially supported by the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+1 种基金the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)supported by RUDN University Strategic Academic Leadership Program。
文摘Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.
基金supported by the National Natural Science Foundation of China (grant 22208339)the China Postdoctoral Science Foundation (2021M693132)+2 种基金the National Key R&D Program of China (2019YFC1905303)the Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-006)the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202132)。
文摘The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.
文摘A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .
基金Project(50831006)supported by the National Natural Science Foundation of ChinaProject(2012BAB10B05)supported by the National Key Technologies R&D Program of China
文摘The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.
文摘As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4-glycosidic bonds,still remains challenging.Here,we report a novel method for oxidative cleavage of the glycosidic bonds by free radicals.Probed by the cellobiose reaction,it was found that·OH radicals,generated from the decomposition of H2O2 catalyzed by CuSO4 or CuO/SiO2,were efficient for selective conversion of cellobiose to glucose and gluconic acid at a low temperature of 333 K,and their selectivities reached 30.0%and 34.6%,respectively,at 23.4%cellobiose conversion.Other radicals,such as·SO4?,also exhibited high efficacy in the cellobiose reaction.Mechanistic studies suggest that the oxidative cleavage of theβ-1,4-glycosidic bond by the free radicals involve formation of the carbon radical intermediate via abstraction of the H atom dominantly at the C1 position.Following this oxidative mechanism,treatment of microcrystalline cellulose with·OH by impregnation with H2O2 and CuSO4 catalyst at 343 K led to significant enhancement in its hydrolysis efficiency.These results demonstrate the effectiveness of this new method in the oxidative cleavage of glycosidic bonds,and its viability for the efficient depolymerization of cellulose at low temperatures,which can be further improved,for example,by exploring new free radicals and optimizing their reactivity and selectivity.
基金the Guizhou Provincial S&T Project(ZK[2022]011)the National Natural Science Foundation of China(21908033,21922513)+1 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2020GXNSFAA297072)the Fok Ying-Tong Education Foundation(161030)。
文摘In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.
文摘A mixture of hypophosphorous acid (H3PO2) and iodine in acetic acid can cleave the N-alkyl bond in a variety of N-1 substituted pyrimidine derivative in relatively high yields, without any damage to the amido bond in the non-nucleosides pyrimidine base skeleton.
基金financially supported by the National Natural Science Foundation of China(21972099)the Application Foundation Program of Sichuan Province(2021YJ0305)+1 种基金the 111 project(B17030).Shanghai Synchrotron Radiation Facility(SSRF)for XAS experiments and the support by the project from NPL of CAEP(2019BB08)。
文摘The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage.
文摘A new type of Cope rearrangement involving carbon-carbon bond cleavage (or de-tbutylation) was found during the heating of 4-allyl-4-methyl-2, 6-di-t-butylsemiquinone,
文摘Seven unsymmetrical diaminodimethylsilanes were prepared. The reactions of these silylamine with benzoyl chloride indicated that in comparison with electronic, the steric effect played more important role on the reactivity of Si-N bond. As a new method, unsymmetrical diamide can produced by the reaction of the title compounds with diacid chloride.
文摘The electrochemical reduction of alkylaquabis (dimethylglyoximato)Cobalt(Ⅲ) in the absence and presence of β-Cyclodextrin (β-CD) was inveingated by means of cylic voltammetry. It was found that β-CD facilitates the cleavage of Co-C bond during the reduchon process.
文摘The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of the ligand was performed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, elemental analysis and single crystal X-ray diffraction. The ligand, (1), possesses a disulfide –S–S– bridge of 2.1121 (3) ? length, and the molecule adopts a cis-conformation around this bond. In the crystal structure of (1), an intramolecular O–H···N hydrogen bond with D… A distance of 2.69 (3) ? was present. The reaction of (1) with Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and CuCl<sub>2</sub>·2H<sub>2</sub>O in methanol afforded the corresponding metal complexes. The obtained solids were further investigated by elemental analysis and UV-Vis titration that confirmed the formation of [CoL] and [ClCuHL] complexes. However, recrystallizaion of the Co(II) complex in dimethylsulfoxide caused the complete hydrolysis of the imine bond and afforded a Co(II) complex in which two 5-nitro-salicylaldehyde and two DMSO molecules were coordinated to the central metal in an octahedral fashion. This structure (2) was also confirmed by single crystal X-ray analysis.
基金supported by the Foundation of the NSFC-CONICFT Joint Project(Grant No.51961125207)National Natural Science Foundation of China(Grant No.22008018)+1 种基金Innovation Support Program for High-level Talents of Dalian(Top and Leading Talents)(Grant No.201913)Dalian City Outstanding Talent Project(Grant No.2019RD13).
文摘The use of functional materials such as carbon-bismuth oxyhalides in integrated photorefineries for the clean production of fine chemicals requires restructuring.A facile biomass-assisted solvothermal fabrication of carbon/bismuth oxychloride nanocomposites(C/BiOCl)was achieved at various temperatures.Compared with BiOCl and C/BiOCl-120,C/BiOCl-180 exhibited higher crystallinity,wider visible light absorption,and a faster migration/separation rate of photoinduced carriers.For the selective C–C bond cleavage of biomass-based feedstocks photocatalyzed by C/BiOCl-180,the xylose conversion and lactic acid yield were 100%and 92.5%,respectively.C/BiOCl-180 efficiently converted different biomass-based monosaccharides to lactic acid,and the efficiency of pentoses was higher than that of hexoses.Moreover,lactic acid synthesis was favored by all active radicals including superoxide ion(·O_(2)^(−)),holes(h^(+)),hydroxyl radical(·OH),and singlet oxygen(^(1)O_(2)),with·O_(2)^(−)playing a key role.The fabricated photocatalyst was stable,economical,and recyclable.The use of biomass-derived monosaccharides for the clean production of lactic acid via the C/BiOCl-180 photocatalyst has opened new research horizons for the investigation and application of C–C bond cleavage in biomass-based feedstocks.
基金financially supported by the National Natural Science Foundation of China (22209039)Top-notch Personnel Fund of Henan Agricultural University (30500682)。
文摘Improving the complete ethanol electrooxidation on Pd-based catalysts in alkaline media has drawn widely attention due to the high mass energy density.However,the weak adsorption energy of CH_(3)CO^(*) on Pd restricts the C–C bond cleavage.Inspired by the molecular orbital theory,we proposed the d-state-editing strategy to construct more unoccupied d-states of Pd for the enhanced interaction with CH_(3)CO^(*) to break C–C bonds.As expected,the reduced number of e_g electrons and more unoccupied d-states of Pd successfully formed on as-prepared porous Rh Au–Pd Cu nanosheets(PNSs).Theoretical calculations show that the optimized d-states of Rh Au–Pd Cu PNS can effectively improve the adsorption of CH_(3)CO^(*) and drastically reduce the energy barrier of C–C bond cleavage,thus boosting the complete oxidation of ethanol.The charge ratio of C_1 pathway on Rh Au–Pd Cu PNSs is 51.5%,more than 2 times higher than that of Pd NSs.Our finding provides an innovative perspective for the design of highly-efficient noble-based electrocatalysts.
基金supported by the National Science Foundation of Shandong Province(No.Z2000B02).
文摘The potential energy surface and reaction mechanism corresponding to the reaction of ytterbium monocation with fluoromethane, which represents a prototype of the activation of C-F bond in fluorohydrocarbons by bare lanthanide cations, have been investigated for the first time by using density functional theory. A direct fluorine abstraction mechanism was revealed, and the related thermochemistry data were determined. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behavior on the transition state region was shown. The present results support the reaction mechanism inferred from early experimental data and the related thermochemistry data can provide a guide for further experimental researches.
基金Project (50834006) supported by the National Natural Science Foundation of ChinaProject (CX2011B122) supported by Hunan Provincial Innovation Foundation for PostgraduateProject (2011ybjz045) supported by Graduate Degree Thesis Innovation Foundation of Central South University
文摘Anisotropic surface broken bond densities of six different surfaces of calcite and three surfaces of fluorite were calculated. In terms of the calculated results, the commonly exposed surfaces of the two minerals were predicted and the relations between surface broken bonds densities and surface energies were analyzed. Then the anisotropic wettability of the commonly exposed surfaces was studied by means of contact angle measurement. The calculation results show that the (101^-4), (213^-4)and (01 1^-8)surfaces for calcite and (111) for fluorite are the most commonly exposed surfaces and there is a good rectilinear relation between surface broken bond density and surface energy with correlation of determination (R^2) of 0.9613 and 0.9969, respectively. The anisotropic wettability of different surfaces after immersing in distilled water and sodium oleate solutions at different concentrations can be explained by anisotropic surface broken bond densities and active Ca sites densities, respectively.