期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
交叉连接的少层残差卷积神经网络 被引量:3
1
作者 李国强 陈文华 高欣 《小型微型计算机系统》 CSCD 北大核心 2021年第3期510-515,共6页
最近的研究表明,卷积神经网络的性能可以通过采用跨层连接来提高,典型的残差网络(Res Net)便通过恒等映射方法取得了非常好的图像识别效果.但是通过理论分析,在残差模块中,跨层连接线的布局并没有达到最优设置,造成信息的冗余和层数的浪... 最近的研究表明,卷积神经网络的性能可以通过采用跨层连接来提高,典型的残差网络(Res Net)便通过恒等映射方法取得了非常好的图像识别效果.但是通过理论分析,在残差模块中,跨层连接线的布局并没有达到最优设置,造成信息的冗余和层数的浪费,为了进一步提高卷积神经网络的性能,文章设计了两种新型的网络结构,分别命名为C-FnetO和C-FnetT,它们在残差模块的基础上进行优化并且具有更少的卷积层层数,同时通过在MNIST,CIFAR-10,CIFAR-100和SVHN公开数据集上的一系列对比实验表明,与最先进的卷积神经网络对比,C-FnetO和C-FnetT网络获得了相对更好的图像识别效果,其中C-FnetT网络的性能最佳,在四种数据集上均取得了最高的准确率. 展开更多
关键词 卷积神经网络 交叉跨层连接 c-fneto C-FnetT ResNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部