Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti- vation reaction, which attracts great interests because both reaction partners do not re- quire pre-functionalization. In the present s...Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti- vation reaction, which attracts great interests because both reaction partners do not re- quire pre-functionalization. In the present study, we employed DFT methods to investigate the mechanism of Pd(OAc)2-catalyzed oxidative C-H/C-H coupling of pentafluoroben-zene with benzene. Four possible pathways were examined in the C-H activation part: path A benzene-pentafluorobenzene mechanism (C-H activation of benzene occurs before the C-H activation of pentafluorobenzene), path B pentafluorobenzene-benzene mechanism (C-H activation of benzene occurs after the C-H activation of pentafluorobenzene), path C benzene-pentafluorophenylsilver mechanism (C-H activation of benzene and subsequent transmetalation with pentafiuorophenyl silver complex), path D pentafiuorophenylsilver- benzene mechanism (transmetalation with pentafluorophenyl silver complex and subsequent C-H activation of benzene). Based on the calculations, the sequences of two C-H activation steps are found to be different in the oxidative couplings of same substrates (i. e. pentafiu- orobenzene and benzene) in different catalytic systems, where the additive Ag salts played a determinant role. In the absence of Ag salts, the energetically favored pathway is path B (i.e. the C-H activation of pentafluorobenzene takes place before the C-H cleavage of benzene). In contrast, with the aid of Ag salts, the coordination of pentafluorophenylsilver to Pd center could occur easily with a subsequent C-H activation of benzene in the second step, and the second step significantly raises the whole reaction barrier. Alternatively, in the presence of Ag salts, the kinetically preferred mechanism is path C (i. e. the C-H activation of benzene takes place in the first step followed by transmetalation with pentafluorophenyl- silver complex), which is similar to path A. The calculations are consistent with the H/D exchange experiment and kinetic isotope effects. Thus the present study not only offers a deeper understanding of oxidative C-H/C-H coupling reaction, but also provides helpful insights to further development of more efficient and selective oxidative C-H/C-H coupling reactions.展开更多
Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functi...Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functional groups. The reaction proceeded via in situ generation of an iodine(Ⅲ) imido. DFT calculations suggest that this oxidative imidaton system proceeds via a Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) pathway.展开更多
The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the ...The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion(94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzalde‐hyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi(1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.展开更多
The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electron...The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electronic properties of these reactions are determined. The calculated activation energies of the breaking of the first and second C–H bonds of propane on the VO3/CeO2(111) catalyst are compared, and it is found that both the unique structural and electronic effects of the VO3/CeO2(111) catalyst contribute to the relatively easy rupture of the first C–H bond of the propane molecule during the ODH reaction. In particular, the so-called new empty localized states that are mainly constituted of O2 porbitals of the ceria-supported VO3 species are determined to be crucial for assisting the cleavage of the first C–H bond of the propane molecule. Following this they become occupied and the remaining C–H bonds become increasingly difficult to break owing to the increasing repulsion between the localized 4 felectrons at the Cecations, resulting in the adsorption of more H and other moieties. This work illustrates that CeO2-supported monomeric vanadium oxides can exhibit unique activity and selectivity for the catalytic ODH of alkanes to alkenes.展开更多
A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydr...A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydroisoquinolines(THIQs) were realized under extremely mild conditions, affording a wide variety of allyl-substituted THIQs in up to 78% yields.展开更多
Using 2,3-dichloro-5,6-dicyano-p-benzoquinone(DDQ)as the oxidant,we communicate an efficient oxidative C–N coupling of benzylic C–H bonds with amides to afford a series of amination products in good yields.A wide ra...Using 2,3-dichloro-5,6-dicyano-p-benzoquinone(DDQ)as the oxidant,we communicate an efficient oxidative C–N coupling of benzylic C–H bonds with amides to afford a series of amination products in good yields.A wide range of functional groups as well as various sulfonamides and carboxamides are well tolerated.Moreover,this reaction involves both the challenging C–H functionalization and C–N bond formation.展开更多
The palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes by using molecular oxygen as an oxidant instead of metal oxidants has been developed for the first time to construct biheteroa...The palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes by using molecular oxygen as an oxidant instead of metal oxidants has been developed for the first time to construct biheteroaryl motifs.A relatively broad range of thiophenes,furans and indoles can smoothly couple with various N-heteroarenes in satisfactory yields.This catalytic system with O2 as the terminal oxidant offers clear advantages of economically feasible and eco-friendly processes.展开更多
文摘Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti- vation reaction, which attracts great interests because both reaction partners do not re- quire pre-functionalization. In the present study, we employed DFT methods to investigate the mechanism of Pd(OAc)2-catalyzed oxidative C-H/C-H coupling of pentafluoroben-zene with benzene. Four possible pathways were examined in the C-H activation part: path A benzene-pentafluorobenzene mechanism (C-H activation of benzene occurs before the C-H activation of pentafluorobenzene), path B pentafluorobenzene-benzene mechanism (C-H activation of benzene occurs after the C-H activation of pentafluorobenzene), path C benzene-pentafluorophenylsilver mechanism (C-H activation of benzene and subsequent transmetalation with pentafiuorophenyl silver complex), path D pentafiuorophenylsilver- benzene mechanism (transmetalation with pentafluorophenyl silver complex and subsequent C-H activation of benzene). Based on the calculations, the sequences of two C-H activation steps are found to be different in the oxidative couplings of same substrates (i. e. pentafiu- orobenzene and benzene) in different catalytic systems, where the additive Ag salts played a determinant role. In the absence of Ag salts, the energetically favored pathway is path B (i.e. the C-H activation of pentafluorobenzene takes place before the C-H cleavage of benzene). In contrast, with the aid of Ag salts, the coordination of pentafluorophenylsilver to Pd center could occur easily with a subsequent C-H activation of benzene in the second step, and the second step significantly raises the whole reaction barrier. Alternatively, in the presence of Ag salts, the kinetically preferred mechanism is path C (i. e. the C-H activation of benzene takes place in the first step followed by transmetalation with pentafluorophenyl- silver complex), which is similar to path A. The calculations are consistent with the H/D exchange experiment and kinetic isotope effects. Thus the present study not only offers a deeper understanding of oxidative C-H/C-H coupling reaction, but also provides helpful insights to further development of more efficient and selective oxidative C-H/C-H coupling reactions.
文摘Rh(Ⅲ)-catalyzed, chelation-assisted oxidative C-H imidation of arenes with N-H imide have been realized using PhI(OAc)2 as an oxidant. This transformation exhibits a broad substrate scope and tolerates various functional groups. The reaction proceeded via in situ generation of an iodine(Ⅲ) imido. DFT calculations suggest that this oxidative imidaton system proceeds via a Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) pathway.
基金supported by the National Natural Science Foundation of China (21703050, 21271153, 21373181)China Postdoctoral Science Foun‐dation (512200‐X91701)Special Research Foundation of Young Teachers in Hangzhou Dianzi University (ZX150204307002/032)~~
文摘The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion(94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzalde‐hyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi(1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.
基金supported by the National Natural Science Foundation of China(21421004,21573067,91545103)Program of Shanghai Academic Research Leader(17XD1401400)~~
文摘The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electronic properties of these reactions are determined. The calculated activation energies of the breaking of the first and second C–H bonds of propane on the VO3/CeO2(111) catalyst are compared, and it is found that both the unique structural and electronic effects of the VO3/CeO2(111) catalyst contribute to the relatively easy rupture of the first C–H bond of the propane molecule during the ODH reaction. In particular, the so-called new empty localized states that are mainly constituted of O2 porbitals of the ceria-supported VO3 species are determined to be crucial for assisting the cleavage of the first C–H bond of the propane molecule. Following this they become occupied and the remaining C–H bonds become increasingly difficult to break owing to the increasing repulsion between the localized 4 felectrons at the Cecations, resulting in the adsorption of more H and other moieties. This work illustrates that CeO2-supported monomeric vanadium oxides can exhibit unique activity and selectivity for the catalytic ODH of alkanes to alkenes.
基金Project supported by the National Natural Science Foundation of China(No.21801018)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1230011181807)~~
基金supported by the National Natural Science Foundation of China(2123200321202053+2 种基金21572074)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201422)Outstanding Youth Funding in Hubei Province(2015CFA033)
文摘A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydroisoquinolines(THIQs) were realized under extremely mild conditions, affording a wide variety of allyl-substituted THIQs in up to 78% yields.
基金supported by the National Basic Research Program of China(2011CB808600,2012CB725302)the National Natural Science Foundation of China(21390400,21272180,21302148)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(20120141130002)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1030)The Program of Introducing Talents of Discipline to Universities of China(111 Program)is also appreciated
文摘Using 2,3-dichloro-5,6-dicyano-p-benzoquinone(DDQ)as the oxidant,we communicate an efficient oxidative C–N coupling of benzylic C–H bonds with amides to afford a series of amination products in good yields.A wide range of functional groups as well as various sulfonamides and carboxamides are well tolerated.Moreover,this reaction involves both the challenging C–H functionalization and C–N bond formation.
基金supported by the National Basic Research Program of China(2011CB808601)the National Natural Science Foundation of China(21432005,21372164,21172155,21272160,21321061,J1103315)Sichuan Provincial Foundation(2012JQ0002)
文摘The palladium/copper-cocatalyzed oxidative C-H/C-H cross-coupling between two heteroarenes by using molecular oxygen as an oxidant instead of metal oxidants has been developed for the first time to construct biheteroaryl motifs.A relatively broad range of thiophenes,furans and indoles can smoothly couple with various N-heteroarenes in satisfactory yields.This catalytic system with O2 as the terminal oxidant offers clear advantages of economically feasible and eco-friendly processes.