Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified ...Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
文摘Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.