Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has bee...Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has been termed as hormone refractory. To identify the proteins that mediate progression to the hormone-refractory state, we used protein-chip technology for mass profiling of patients' sera. This study included 16 patients with metastatic hormone-refractory prostate cancer who were initially treated with androgen deprivation therapy. Serum samples were collected from each patient at five time points: point A, pre-treatment; point B, at the nadir of the prostate- specific antigen (PSA) level; point C, PSA failure; point D, the early hormone-refractory phase; and point E, the late hormone-refractory phase. Using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, we performed protein mass profiling of the patients' sera and identified a 6 640-Da peak that increased with disease progression. Target proteins were partially purified, and by amino acid sequencing the peak was identified as a fragment of apolipoprotein C-I (ApoC-I). Serum ApoC-I protein levels increased with disease progression. On immunohistochemical analysis, the ApoC-i protein was found localized to the cytoplasm of the hormone-refractory cancer cells. In this study, we showed an increase in serum ApoC-I protein levels in prostate cancer patients during their progression to the hormone-refractory state, which suggests that ApoC-I protein is related to progression of prostate cancer. However, as the exact role of ApoC-I in prostate cancer pathogenesis is unclear, further research is required.展开更多
Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amo...Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.展开更多
A rabbit anti serum to tree shrew apolipoprotein C I (apo C I) was used to screen an expression cDNA library constructed by us from tree shrew (TS)liver tissue. Two apo C I cDNA clones were obtained. The longer one co...A rabbit anti serum to tree shrew apolipoprotein C I (apo C I) was used to screen an expression cDNA library constructed by us from tree shrew (TS)liver tissue. Two apo C I cDNA clones were obtained. The longer one consistsof 380 nucleotides, including 21 bp and 95 bp at the 5’ and 3’ end of the non translated regions respectively, and a 264 bp fragment in an open reading frame encoding 88 amino acids prepropeptide which contains 26 amino acids of signal peptide and a mature protein (62 amino acids). Comparing the amino acid sequence deduced from this cDNA with those of the published mammalian apo C Is reveals that it shared some structural similarity with rat, mouse and dog apo C I, but it had 5 more amino acids than that of human and baboon. The expression of apo C I mRNA in 8 different tissues were also assayed with Northern blot. The results demonstrated that liver had the highest expression, intestine had much less expression and no expression in other tissues, which is much different from human and other species. This study has laid down a good foundation for further studying on the function and the stucture of tree shrew apo C I gene.展开更多
AIM To investigate the effect of(-)-epigallocatechin-3-gallate(EGCG) on polyinosinic-polycytidylic acid(poly I:C)-triggered intracellular innate immunity against hepatitis C virus(HCV) in hepatocytes. METHODS A cell c...AIM To investigate the effect of(-)-epigallocatechin-3-gallate(EGCG) on polyinosinic-polycytidylic acid(poly I:C)-triggered intracellular innate immunity against hepatitis C virus(HCV) in hepatocytes. METHODS A cell culture model of HCV infection was generated by infecting a hepatoma cell line, Huh7, with HCV JFH-1 strain(JFH-1-Huh7). Poly I:C with a high molecular weight and EGCG were used to stimulate the JFH-1-Huh7 cells. Real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of intracellular m RNAs and of intracellular and extracellular HCV RNA. Enzyme-linked immunosorbent assay was used to evaluate the interferon(IFN)-λ1 protein level in the cell culture supernatant. Immunostaining was used to examine HCV core protein expression in Huh7 cells.RESULTS Our recent study showed that HCV replication could impair poly I:C-triggered intracellular innate immune responses in hepatocytes. In the current study, we showed that EGCG treatment significantly increased the poly I:C-induced expression of Toll-like receptor 3(TLR3), retinoic acid-inducible gene I, and IFN-λ1 in JFH-1-Huh7 cells. In addition, supplementation with EGCG increased the poly I:C-mediated antiviral activity in JFH-1-Huh7 cells at the intracellular and extracellular HCV RNA and protein levels. Further investigation of the mechanisms showed that EGCG treatment significantly enhanced the poly I:C-induced expression of IFN-regulatory factor 9 and several antiviral IFNstimulated genes, including ISG15, ISG56, myxovirus resistance A, and 2'-5'-oligoadenylate synthetase 1, which encode the key antiviral elements in the IFN signaling pathway. CONCLUSION Our observations provide experimental evidence that EGCG has the ability to enhance poly I:C-induced intracellular antiviral innate immunity against HCV replication in hepatocytes.展开更多
双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、...双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、多能耦合供应环节以及柔性负荷需求响应环节的数学模型。其次,考虑光伏、负荷和沼气的不确定性,建立生态农业IES两阶段鲁棒优化模型。模型引入碳排放成本和启停成本,可降低农业生产碳排放,防止机组频繁启停。然后,采用列与约束生成算法(column-and-constraint generation,C&CG),结合强对偶定理与线性化理论实现模型求解。最后,基于江西省某生态牧场IES进行算例仿真,验证所提策略的有效性。仿真结果表明,所提策略可实现生态农业IES的协调运行,提高系统经济性、低碳性和能效性。展开更多
文摘Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has been termed as hormone refractory. To identify the proteins that mediate progression to the hormone-refractory state, we used protein-chip technology for mass profiling of patients' sera. This study included 16 patients with metastatic hormone-refractory prostate cancer who were initially treated with androgen deprivation therapy. Serum samples were collected from each patient at five time points: point A, pre-treatment; point B, at the nadir of the prostate- specific antigen (PSA) level; point C, PSA failure; point D, the early hormone-refractory phase; and point E, the late hormone-refractory phase. Using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, we performed protein mass profiling of the patients' sera and identified a 6 640-Da peak that increased with disease progression. Target proteins were partially purified, and by amino acid sequencing the peak was identified as a fragment of apolipoprotein C-I (ApoC-I). Serum ApoC-I protein levels increased with disease progression. On immunohistochemical analysis, the ApoC-i protein was found localized to the cytoplasm of the hormone-refractory cancer cells. In this study, we showed an increase in serum ApoC-I protein levels in prostate cancer patients during their progression to the hormone-refractory state, which suggests that ApoC-I protein is related to progression of prostate cancer. However, as the exact role of ApoC-I in prostate cancer pathogenesis is unclear, further research is required.
基金the National Natural Science Foundation of China(21503096,21407067)the Natural Science Foundation of Jiangsu Province(BK20140506)~~
文摘Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.
文摘A rabbit anti serum to tree shrew apolipoprotein C I (apo C I) was used to screen an expression cDNA library constructed by us from tree shrew (TS)liver tissue. Two apo C I cDNA clones were obtained. The longer one consistsof 380 nucleotides, including 21 bp and 95 bp at the 5’ and 3’ end of the non translated regions respectively, and a 264 bp fragment in an open reading frame encoding 88 amino acids prepropeptide which contains 26 amino acids of signal peptide and a mature protein (62 amino acids). Comparing the amino acid sequence deduced from this cDNA with those of the published mammalian apo C Is reveals that it shared some structural similarity with rat, mouse and dog apo C I, but it had 5 more amino acids than that of human and baboon. The expression of apo C I mRNA in 8 different tissues were also assayed with Northern blot. The results demonstrated that liver had the highest expression, intestine had much less expression and no expression in other tissues, which is much different from human and other species. This study has laid down a good foundation for further studying on the function and the stucture of tree shrew apo C I gene.
基金Supported by the National Natural Science Foundation of China,No.81500449the Natural Science Foundation of Shanghai,No.14ZR1434200+2 种基金Shanghai Municipal Commission of Health and Family Planning,No.20144Y0175the Scientific Research Foundation for the Returned Overseas Chinese Scholarsthe State Education Ministry of China,No.20150909-6
文摘AIM To investigate the effect of(-)-epigallocatechin-3-gallate(EGCG) on polyinosinic-polycytidylic acid(poly I:C)-triggered intracellular innate immunity against hepatitis C virus(HCV) in hepatocytes. METHODS A cell culture model of HCV infection was generated by infecting a hepatoma cell line, Huh7, with HCV JFH-1 strain(JFH-1-Huh7). Poly I:C with a high molecular weight and EGCG were used to stimulate the JFH-1-Huh7 cells. Real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of intracellular m RNAs and of intracellular and extracellular HCV RNA. Enzyme-linked immunosorbent assay was used to evaluate the interferon(IFN)-λ1 protein level in the cell culture supernatant. Immunostaining was used to examine HCV core protein expression in Huh7 cells.RESULTS Our recent study showed that HCV replication could impair poly I:C-triggered intracellular innate immune responses in hepatocytes. In the current study, we showed that EGCG treatment significantly increased the poly I:C-induced expression of Toll-like receptor 3(TLR3), retinoic acid-inducible gene I, and IFN-λ1 in JFH-1-Huh7 cells. In addition, supplementation with EGCG increased the poly I:C-mediated antiviral activity in JFH-1-Huh7 cells at the intracellular and extracellular HCV RNA and protein levels. Further investigation of the mechanisms showed that EGCG treatment significantly enhanced the poly I:C-induced expression of IFN-regulatory factor 9 and several antiviral IFNstimulated genes, including ISG15, ISG56, myxovirus resistance A, and 2'-5'-oligoadenylate synthetase 1, which encode the key antiviral elements in the IFN signaling pathway. CONCLUSION Our observations provide experimental evidence that EGCG has the ability to enhance poly I:C-induced intracellular antiviral innate immunity against HCV replication in hepatocytes.
文摘双碳政策推动下,乡村农业综合能源系统(integrated energy system,IES)的多能耦合关系更加复杂。为实现农业园区可靠运行,提出面向生态农业IES的多能互补与低碳运行优化调度策略。首先,基于农业园区的能量流动关系,建立沼气生产环节、多能耦合供应环节以及柔性负荷需求响应环节的数学模型。其次,考虑光伏、负荷和沼气的不确定性,建立生态农业IES两阶段鲁棒优化模型。模型引入碳排放成本和启停成本,可降低农业生产碳排放,防止机组频繁启停。然后,采用列与约束生成算法(column-and-constraint generation,C&CG),结合强对偶定理与线性化理论实现模型求解。最后,基于江西省某生态牧场IES进行算例仿真,验证所提策略的有效性。仿真结果表明,所提策略可实现生态农业IES的协调运行,提高系统经济性、低碳性和能效性。