期刊文献+
共找到8,234篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of B_(2)O_(3) enrichment on microstructural inhomogeneity of high strength steel weldments
1
作者 Joydeep Roy Pritam Das 《China Welding》 CAS 2024年第3期25-32,共8页
The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to eval... The present work attributes the role of boron on the high strength steel submerged arc weld using an undermatching filler wire.Mild steel filler wire was used for welding in constant machine parameters setting to evaluate the joint strength due to the enrichment of boron.To change the chemical composition of the weld metal,boron trioxide powder was blended with virgin flux in various proportions(2.5%−12.5%),which led to an increase in boron weight percentage in the range of 0−0.0065.The results show that weld metals(WM)optical micrographs depict the various types of ferrites,pearlites and secondary phases like martensite-austenite(M-A).Acicular ferrite content was influenced by the boron trioxide addition.Heat affected zone(HAZ)micrographs were not showing appreciable changes with oxide enrichment.Hardness and toughness of weld metals showed the mixed trend with B_(2)O_(3) enrichment whereas,small reduction in ultimate tensile strength(UTS)and yield strength(YS)was observed. 展开更多
关键词 high strength steel B_(2)O_(3) flux microstructure HARDNESS TOUGHNESS ultimate tensile strength
下载PDF
Product Development of High Strength and Toughness Spring Flat Steel
2
作者 Jianxin Wang Chunhui Zhang 《Frontiers of Metallurgical Industry》 2024年第1期15-18,共4页
With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi... With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements. 展开更多
关键词 spring flat steel mechanical properties high strength high toughness
下载PDF
Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels 被引量:7
3
作者 Zhi-gang Wang A i-min Zhao +3 位作者 Zheng-zhi Zhao Jie-yun Ye Di Tang Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期915-922,共8页
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens... The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior. 展开更多
关键词 high strength steel dual-phase steel alloying elements microstructure mechanical properties sWain hardening
下载PDF
Research and Development of Cemented Carbide Multifacet Drill for Drilling High Strength Steel 被引量:1
4
作者 庞思勤 于启勋 姬广振 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期72-76,共5页
Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a n... Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance. 展开更多
关键词 DRILLING multi facet drill cemented carbide high strength steel
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
5
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels 被引量:13
6
作者 Jin-yan Zhong Min Sun +2 位作者 Da-bo Liu Xiao-gang Li Tian-qi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期282-289,共8页
The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steel... The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels. 展开更多
关键词 ultra high strength steel corrosion rate CHROMIUM electrochemical behavior
下载PDF
Effect of microstructure on the low temperature toughness of high strength pipeline steels 被引量:10
7
作者 Yan-ping Zeng Peng-yu Zhu Ke Tong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期254-261,共8页
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff... Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries. 展开更多
关键词 high strength pipe steels microstrucmre low temperature TOUGHNESS influencing factors
下载PDF
Design of a low-alloy high-strength and high-toughness martensitic steel 被引量:8
8
作者 Yan-jun Zhao Xue-ping Ren +1 位作者 Wen-chao Yang Yue Zang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期733-740,共8页
To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstru... To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively. 展开更多
关键词 high strength steel martensitic steel alloy design THERMODYNAMICS alloying elements microstructuremechanical properties
下载PDF
Delayed Fracture Behavior of CrMo-Type High Strength Steel Containing Titanium 被引量:7
9
作者 HUIWei-jun DONGHan +3 位作者 WENGYu-qing WANGMao-qiu CHENSi-lian SHIJie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2005年第1期43-49,共7页
The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te... The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition. 展开更多
关键词 TITANIUM delayed fracture high strength steel CrMo steel
下载PDF
Study on non-metallic inclusions in Al killed high strength alloy steel refined by high basicity and high Al_2O_3 content slag 被引量:11
10
作者 WANG Xinhua,JIANG Min and WANG Wanjun School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Baosteel Technical Research》 CAS 2010年第S1期21-,共1页
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg... Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions. 展开更多
关键词 non-metallic inclusion SPINEL SLAG high strength alloying steel refining fatigue
下载PDF
Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure 被引量:5
11
作者 Xue-xia Xu Yang Yu Wen-long Cui Bing-zhe Bai Jia-lin Gu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期285-292,共8页
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason... The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties. 展开更多
关键词 high strength steel ultra-high cycle fatigue BAINITE MARTENSITE fatigue behavior
下载PDF
Effect of microstructure on corrosion behavior of high strength martensite steel-A literature review 被引量:10
12
作者 Li Wang Chao-fang Dong +3 位作者 Cheng Man Ya-bo Hu Qiang Yu Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期754-773,共20页
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m... The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored. 展开更多
关键词 corrosion behavior high strength martensite steel MICROSTRUCTURE additive manufacturing
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
13
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading 被引量:5
14
作者 Wang Jiaojiao Shi Gang Shi Yongjiu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期611-622,共12页
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di... To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases. 展开更多
关键词 high strength steel width-to-thickness ratio axial load ratio seismic behavior I-section column
下载PDF
Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns 被引量:9
15
作者 卢亦焱 李娜 +1 位作者 李杉 梁鸿骏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2287-2296,共10页
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ... An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures. 展开更多
关键词 concrete-filled steel tube (CFST) zolumns steel fiber high strength concrete axial load DUCTILITY load capacity
下载PDF
Investigation of Surface Damage in Forming of High Strength and Galvanized Steel Sheets 被引量:4
16
作者 Zhongqi Yu Yingke Hou +2 位作者 Haomin Jiang Xinping Chen Weigang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期389-394,共6页
Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate... Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best. 展开更多
关键词 Surface damage Sheet metal forming high strength steel Galvanized steel
下载PDF
High-temperature properties and microstructure of Mo microalloyed ultra-high-strength steel 被引量:3
17
作者 Qi-hang Han Yong-lin Kang +2 位作者 Xian-meng Zhao Lu-feng Gao Xue-song Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期407-412,共6页
The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Throug... The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Through the comparison of reduction in area and hot deformation resistance at 600-1300°C,the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one.The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software(TCW).The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6,which promote pearlite formation.The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one.This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis(EPMA),which improves the strength of grain boundaries. 展开更多
关键词 high strength steels high temperature properties MICROSTRUCTURE MOLYBDENUM THERMODYNAMICS
下载PDF
Development of a New Kind of High Strength Spring Steel 被引量:3
18
作者 DexiangXU ZhongdaYIN DefuLIU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期557-560,共4页
A new kind of high strength, high toughness and high plasticity spring steel has been developed. The strength, the reduction of area and the elongation of the steel are all higher than those of the steel 60Si2CrVA. Th... A new kind of high strength, high toughness and high plasticity spring steel has been developed. The strength, the reduction of area and the elongation of the steel are all higher than those of the steel 60Si2CrVA. The decarburization resistance and the sag resistance are also higher than those of the steel 60Si2CrVA. It has good hardenability, and is suitable for making springs with big cross section. The bogie springs made of this kind of steel have passed 2×106 cycles without broken under the conditions of maximum stress of 906 MPa and the minimum stress of 388 MPa. 展开更多
关键词 Spring steel high strength TOUGHNESS PLASTICITY Sag resistance HARDENABILITY Fatigue
下载PDF
Effects of the shape and size of rectangular inclusions on the fatigue cracking behavior of ultra-high strength steels 被引量:3
19
作者 Yan-ping Zeng Hong-mei Fan Xi-shan Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第4期360-364,共5页
The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape ... The fatigue cracking behavior of ultra-high strength steels containing rectangular inclusions of small sizes were investigated based on in situ observations by scanning electron microscopy (SEM). The size and shape of rectangular inclusions affect markedly the initiation site and propagation path of a fatigue crack. Especially, the initiation site of a fatigue crack depends strongly on the angle between the long-axis of a rectangle inclusion and the loading direction, and the length/width ratio of this rectangle inclusion because the residual stress distribution fields vary with these conditions. The results coincide very well with those of finite element analysis. 展开更多
关键词 high strength steel INCLUSIONS fatigue of materials crack initiation crack propagation
下载PDF
Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel 被引量:3
20
作者 Hong-xiang Yin Ai-min Zhao +4 位作者 Zheng-zhi Zhao Xiao Li Shuang-jiao Li Han-jiang Hu Wei-guang Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期262-271,共10页
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat... The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel. 展开更多
关键词 high strength steels transformation-induced plasticity phase transformations mechanical properties original microstructure work hardening
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部