As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steel...As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.展开更多
Abstract: In the present study was investigated Arg-X protease-sensitive in supramolecular-genome compartments (nucleoplasm, chromatin, nuclear matrix), during the period of the transcriptional activation of chroma...Abstract: In the present study was investigated Arg-X protease-sensitive in supramolecular-genome compartments (nucleoplasm, chromatin, nuclear matrix), during the period of the transcriptional activation of chromatin when the growth processes was initiated in the mature germs of winter and transformed from it spring wheat. The germs have been separated from endosperm from 0 h (air-dry seed) up to 21 h in each 3 h after the start of seeds soaking. Cell nucleus have been allocated from germs and cleared, and then from them supramolecular-genome compartments were extracted by increasing ionic strength of solution. The Arg-X (tryptase) activity was assessed by cleavage of Arg-X bonds in the arginine-enriched protein protamine in all nuclear fractions. In the present study have shown what Arg-X protease-sensitives zones can be located on the supramolecular structures of chromatin matrix in processes of realization of ontogenetic programs of development in mature germs of the winter and transformed from it spring wheat. Arg-X protease-sensitive can translocate and coordinated in heteropolymer structures on the same genetic matrix. Questions of epigenetic mechanisms are discussed.展开更多
The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by im...The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.展开更多
量子色动力学(Quantum Chromodynamics,QCD)相图结构和相变临界点是高能物理理论和实验的研究热点。相对论重离子碰撞是探索QCD相图结构、寻找QCD相变临界点的有力工具。美国布鲁克海文国家实验室的相对论重离子对撞机(Relativistic Hea...量子色动力学(Quantum Chromodynamics,QCD)相图结构和相变临界点是高能物理理论和实验的研究热点。相对论重离子碰撞是探索QCD相图结构、寻找QCD相变临界点的有力工具。美国布鲁克海文国家实验室的相对论重离子对撞机(Relativistic Heavy Ion Collider,RHIC)是目前世界上进行高能重离子碰撞的大型实验装置之一,其中的STAR(Solenoidal Tracker at RHIC)实验致力于高温高密条件下夸克胶子等离子体(Quark Gluon Plasma,QGP)性质以及QCD相结构的实验研究。本文着重介绍近年来RHIC-STAR能量扫描实验中运用守恒荷高阶矩和轻核产生寻找QCD相变临界点的研究进展,最后将对高重子密度区QCD相结构的未来研究做出展望。展开更多
Dissolution of cement clinker minerals involves a number of physical and chemical processes, and the simulation of dissolution processes helps to understand cement hydration conveniently. Dissolution model of cement c...Dissolution of cement clinker minerals involves a number of physical and chemical processes, and the simulation of dissolution processes helps to understand cement hydration conveniently. Dissolution model of cement clinker minerals was set up based on simulation theory of geochemical reaction equilibrium, PHREEQC simulation software provided by United States Geological Survey (USGS) was employed for thermodynamic calculation of C-S-H system. Stability of C-S-H system with low Ca/Si ratio at normal temperature was also explored. The results show that many phase assemblages coexist with the aqueous phase depending on its composition. The most stable product varies with different Ca/Si ratio of C-S-H system. Active SiO2 will consume excessive CH, so the Ca/Si ratios of C-S-H system decrease, C-S-H with low Ca/Si ratio becomes the most stable product, and this is the thermodynamic driving force of secondary pozzolanic reaction.展开更多
Molecular dynamics simulation is carried out to investigate the effects of cooling rate on the final configurations of silver after rapid solidification. The cooling rate for the formation of a silver amorphous phase ...Molecular dynamics simulation is carried out to investigate the effects of cooling rate on the final configurations of silver after rapid solidification. The cooling rate for the formation of a silver amorphous phase is determined by analyzing its pair distribution function, H-A bond index, and the largest crystal cluster. Further, the equilibrium structures of the subcritical nuclei and crystal clusters are studied. The results show that the solidified microstructure is composed of a mixture of crystal clusters and amorphous phases at a certain cooling rate range. The size of the largest crystal cluster decreases with the increasing cooling rate, and it completely disappears when the cooling rate exceeds a critical value. The structures of the subcritical nuclei and the largest crystal cluster are composed of lamellar structures of fcc and hcp atoms, indicating that the lamellar structure of fcc and hcp atoms in the silver crystal originates from nucleation, and not from the growth of crystals.展开更多
文摘As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.
文摘Abstract: In the present study was investigated Arg-X protease-sensitive in supramolecular-genome compartments (nucleoplasm, chromatin, nuclear matrix), during the period of the transcriptional activation of chromatin when the growth processes was initiated in the mature germs of winter and transformed from it spring wheat. The germs have been separated from endosperm from 0 h (air-dry seed) up to 21 h in each 3 h after the start of seeds soaking. Cell nucleus have been allocated from germs and cleared, and then from them supramolecular-genome compartments were extracted by increasing ionic strength of solution. The Arg-X (tryptase) activity was assessed by cleavage of Arg-X bonds in the arginine-enriched protein protamine in all nuclear fractions. In the present study have shown what Arg-X protease-sensitives zones can be located on the supramolecular structures of chromatin matrix in processes of realization of ontogenetic programs of development in mature germs of the winter and transformed from it spring wheat. Arg-X protease-sensitive can translocate and coordinated in heteropolymer structures on the same genetic matrix. Questions of epigenetic mechanisms are discussed.
基金The National Natural Science Foundation of China(No.52122802,52078126)Jiangsu Provincial Department of Science and Technology Innovation Support Program(No.BK20222004,BZ2022036).
文摘The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.
文摘量子色动力学(Quantum Chromodynamics,QCD)相图结构和相变临界点是高能物理理论和实验的研究热点。相对论重离子碰撞是探索QCD相图结构、寻找QCD相变临界点的有力工具。美国布鲁克海文国家实验室的相对论重离子对撞机(Relativistic Heavy Ion Collider,RHIC)是目前世界上进行高能重离子碰撞的大型实验装置之一,其中的STAR(Solenoidal Tracker at RHIC)实验致力于高温高密条件下夸克胶子等离子体(Quark Gluon Plasma,QGP)性质以及QCD相结构的实验研究。本文着重介绍近年来RHIC-STAR能量扫描实验中运用守恒荷高阶矩和轻核产生寻找QCD相变临界点的研究进展,最后将对高重子密度区QCD相结构的未来研究做出展望。
基金funded by the fundamental Research Funds tor the Central Universities(No.CUGL150807)China University of Geosciences(Wuhan)and Public Service Project of the Chinese Ministry of Land and Resources(No.201311024)
文摘Dissolution of cement clinker minerals involves a number of physical and chemical processes, and the simulation of dissolution processes helps to understand cement hydration conveniently. Dissolution model of cement clinker minerals was set up based on simulation theory of geochemical reaction equilibrium, PHREEQC simulation software provided by United States Geological Survey (USGS) was employed for thermodynamic calculation of C-S-H system. Stability of C-S-H system with low Ca/Si ratio at normal temperature was also explored. The results show that many phase assemblages coexist with the aqueous phase depending on its composition. The most stable product varies with different Ca/Si ratio of C-S-H system. Active SiO2 will consume excessive CH, so the Ca/Si ratios of C-S-H system decrease, C-S-H with low Ca/Si ratio becomes the most stable product, and this is the thermodynamic driving force of secondary pozzolanic reaction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51071115, 50671075)the National Basic Research Program of China ("973" Program) (Grant No. 2006CB605202)
文摘Molecular dynamics simulation is carried out to investigate the effects of cooling rate on the final configurations of silver after rapid solidification. The cooling rate for the formation of a silver amorphous phase is determined by analyzing its pair distribution function, H-A bond index, and the largest crystal cluster. Further, the equilibrium structures of the subcritical nuclei and crystal clusters are studied. The results show that the solidified microstructure is composed of a mixture of crystal clusters and amorphous phases at a certain cooling rate range. The size of the largest crystal cluster decreases with the increasing cooling rate, and it completely disappears when the cooling rate exceeds a critical value. The structures of the subcritical nuclei and the largest crystal cluster are composed of lamellar structures of fcc and hcp atoms, indicating that the lamellar structure of fcc and hcp atoms in the silver crystal originates from nucleation, and not from the growth of crystals.