The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed...The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.展开更多
Effects of polycarboxylate-type superplasticizer(PC) molecular structure on the hydration heat of tricalcium silicate(C3S) paste and polymerization degree of hydration products(C-S-H gel) were researched by usin...Effects of polycarboxylate-type superplasticizer(PC) molecular structure on the hydration heat of tricalcium silicate(C3S) paste and polymerization degree of hydration products(C-S-H gel) were researched by using TAM AIR isothermal microcalorimetry(TA) and 29Si nuclear magnetic resonance(NMR).Methoxy polyethylene glycol-methacrylates-based polycarboxylate superplasticizers with different side chain lengths and main chain lengths were employed.PC molecules with shorter main chain or longer side chains caused stronger retardation of C3S early hydration and lesser increase of C3S 3 d hydration degree.NMR measurement indicated that the incorporation of PC increased the hydration degree of C3S paste and the polymerization degree of silicon-oxygen tetrahedron of C-S-H gel.The tendency for C3S 7 d hydration degree to improve was more pronounced while PC molecules with longer main chain or shorter side chain were added.Whereas,PC molecules with longer main chains or longer side chains increased the 7 d polymerization degree of C-S-H gel.展开更多
In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca...In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca(OH)_2 was used as alkali-activator to activate the active SiO_2 and Al_2O_3 compositions in Yellow River sediment. 10 wt% slag was added into the mixture to further improve the strength of the composites. The effect of activity rate of the Yellow River sediment and dosage of Ca(OH) _2 on the compressive strength of the Yellow River sediment-slag composite material at different curing ages was researched. XRD, SEM/EDS, light microscope and FTIR were used to further explore the products and the microstructure of the composite material. Results showed that the active ratio of sediment had a great influence on the compressive strength of specimen. In addition, the compressive strength of specimen increased with the increase of Ca(OH)_2dosage and curing age. When the dosage of Ca(OH)_2 was more than 5 wt% as well as the curing age reached 90 days, the compressive strength of the composite material could meet the engineering requirement. In the alkali-activated process, the main product was hydrated calcium silicate(C-S-H) gel, which filled up the gaps among the sediment particles and decreased the porosity of the specimen. Moreover, the CaCO_3 produced by the carbonization of the C-S-H gel and excess Ca(OH)_2 also played a role on the strength.展开更多
ABSTRACT A routte for the in paste synthesis of TiO2 loaded cement is described. TiO2 sols are blended with fresh cement paste as an alternative process to add photocatalytic functionality to cement. The modification ...ABSTRACT A routte for the in paste synthesis of TiO2 loaded cement is described. TiO2 sols are blended with fresh cement paste as an alternative process to add photocatalytic functionality to cement. The modification of cement paste structure after the addition ofTiO2 sols is analyzed by XRD, SEM and TGA. As a particular microstructural feature, TiO2 containing calcium silicate hydrate (C-H-S) particles are identified as networking centers ofa C-S-H gel fiber matrix. The increase of the TiO2 sol concentration induces a decrease of pore size and an increase in the specific surface area in the cement composites. The photocatalytic activity of the TiO2/cement system is evaluated from the degradation of Methylene Blue (MB) under UV irradiation, monitored through the absorbance at 665 nm. The results show that, although TiO2 phases reveal no long range order structure, the cement paste exothermal treatment in presence of hydrate products and alkaline conditions leads to a photocatalytic composite. Such new cement matrix may be twofold advantageous since it additionally promotes the formation of C-S-H gel, main determinant of cement mechanical properties.展开更多
In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoin...In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoindentation characteristics of the samples with similar 28-day strengths have been investigated. The results indicate that the volume fractions of porosity in po- rosity and hydration product phases of the samples with the same kind of mineral admixture are almost equal to each other, and are greater than that of the sample without mineral admixture. Mineral admixtures especially MK can decrease remarkably the volume fractions of CH in porosity and hydration product phases, and there exists a good linear relationship between the (AI+Si)/Ca molar ratio of cementitious materials chemical compositions and the volume fraction of HD C-S-H gel in C-S-H gel. Therefore, it is possible to predict the volume fraction change of HD C-S-H gel in C-S-H gel by simply calculating the (AI+Si)/Ca molar ratio of cementitious materials with similar 28-day strengths under the constant water-binder ratio.展开更多
Based on the crystal structure refinement, the arrangement and characteristics of the double tetrahedra of Si-O backbone of suolunite have been precisely clarified. The double tetrahedra are isolated, and the orientat...Based on the crystal structure refinement, the arrangement and characteristics of the double tetrahedra of Si-O backbone of suolunite have been precisely clarified. The double tetrahedra are isolated, and the orientations of the closely adjacent double tetrahedra are perpendicular to each other, which results in the poor cleavage and high hardness of suolunite. Com-展开更多
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623106)the National Natural Science Foundation of China (Grant No. U1134008)
文摘The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.
基金Funded by the National Basic Research Program of China(973 Program)(No.2009CB623201)
文摘Effects of polycarboxylate-type superplasticizer(PC) molecular structure on the hydration heat of tricalcium silicate(C3S) paste and polymerization degree of hydration products(C-S-H gel) were researched by using TAM AIR isothermal microcalorimetry(TA) and 29Si nuclear magnetic resonance(NMR).Methoxy polyethylene glycol-methacrylates-based polycarboxylate superplasticizers with different side chain lengths and main chain lengths were employed.PC molecules with shorter main chain or longer side chains caused stronger retardation of C3S early hydration and lesser increase of C3S 3 d hydration degree.NMR measurement indicated that the incorporation of PC increased the hydration degree of C3S paste and the polymerization degree of silicon-oxygen tetrahedron of C-S-H gel.The tendency for C3S 7 d hydration degree to improve was more pronounced while PC molecules with longer main chain or shorter side chain were added.Whereas,PC molecules with longer main chains or longer side chains increased the 7 d polymerization degree of C-S-H gel.
基金Funded by the National Natural Science Foundation of China(Nos.51578108,51878116,51809109)the Fundamental Research Fund for the Central Universities(No.DUT18ZD219)National Key R&D Program of China(No.2017YFC0504506)
文摘In order to consume the Yellow River sediment as much as possible and improve the longterm stability of the Yellow River, Yellow River sediment was utilized as the main raw material to produce a composite material. Ca(OH)_2 was used as alkali-activator to activate the active SiO_2 and Al_2O_3 compositions in Yellow River sediment. 10 wt% slag was added into the mixture to further improve the strength of the composites. The effect of activity rate of the Yellow River sediment and dosage of Ca(OH) _2 on the compressive strength of the Yellow River sediment-slag composite material at different curing ages was researched. XRD, SEM/EDS, light microscope and FTIR were used to further explore the products and the microstructure of the composite material. Results showed that the active ratio of sediment had a great influence on the compressive strength of specimen. In addition, the compressive strength of specimen increased with the increase of Ca(OH)_2dosage and curing age. When the dosage of Ca(OH)_2 was more than 5 wt% as well as the curing age reached 90 days, the compressive strength of the composite material could meet the engineering requirement. In the alkali-activated process, the main product was hydrated calcium silicate(C-S-H) gel, which filled up the gaps among the sediment particles and decreased the porosity of the specimen. Moreover, the CaCO_3 produced by the carbonization of the C-S-H gel and excess Ca(OH)_2 also played a role on the strength.
文摘ABSTRACT A routte for the in paste synthesis of TiO2 loaded cement is described. TiO2 sols are blended with fresh cement paste as an alternative process to add photocatalytic functionality to cement. The modification of cement paste structure after the addition ofTiO2 sols is analyzed by XRD, SEM and TGA. As a particular microstructural feature, TiO2 containing calcium silicate hydrate (C-H-S) particles are identified as networking centers ofa C-S-H gel fiber matrix. The increase of the TiO2 sol concentration induces a decrease of pore size and an increase in the specific surface area in the cement composites. The photocatalytic activity of the TiO2/cement system is evaluated from the degradation of Methylene Blue (MB) under UV irradiation, monitored through the absorbance at 665 nm. The results show that, although TiO2 phases reveal no long range order structure, the cement paste exothermal treatment in presence of hydrate products and alkaline conditions leads to a photocatalytic composite. Such new cement matrix may be twofold advantageous since it additionally promotes the formation of C-S-H gel, main determinant of cement mechanical properties.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2009CB623200)the Airport Building Research Program of Jiangsu Province China(Grant No.LKJC-11-KY-001)the Research and Application Program of China’s Ministry of Railways(Grant No.2010g004-h)
文摘In order to determine the effects of different mineral admixtures including fly ash (FA), blast furnace slag (BFS) and metakaolin (MK) on hydration product phases from the nanoscale structure perspective, nanoindentation characteristics of the samples with similar 28-day strengths have been investigated. The results indicate that the volume fractions of porosity in po- rosity and hydration product phases of the samples with the same kind of mineral admixture are almost equal to each other, and are greater than that of the sample without mineral admixture. Mineral admixtures especially MK can decrease remarkably the volume fractions of CH in porosity and hydration product phases, and there exists a good linear relationship between the (AI+Si)/Ca molar ratio of cementitious materials chemical compositions and the volume fraction of HD C-S-H gel in C-S-H gel. Therefore, it is possible to predict the volume fraction change of HD C-S-H gel in C-S-H gel by simply calculating the (AI+Si)/Ca molar ratio of cementitious materials with similar 28-day strengths under the constant water-binder ratio.
文摘Based on the crystal structure refinement, the arrangement and characteristics of the double tetrahedra of Si-O backbone of suolunite have been precisely clarified. The double tetrahedra are isolated, and the orientations of the closely adjacent double tetrahedra are perpendicular to each other, which results in the poor cleavage and high hardness of suolunite. Com-