The aims of the study were to investigate the incidence of C-shaped root canal systems in mandibular second molars in a native Chinese population using radiography and clinical examination under microscope and to comp...The aims of the study were to investigate the incidence of C-shaped root canal systems in mandibular second molars in a native Chinese population using radiography and clinical examination under microscope and to compare the relative efficacies of these methods. For the recognition of C-shaped root canal system, 1 146 mandibular second molars were selected and examined. Teeth with C-shaped canal systems were categorized by using the radiographic classification criteria and the modified Melton's method. C-shaped canals were identified in 397 (34.64%) mandibular second molars by radiography (type I, 31.23%; type II, 38.29%; type III, 30.48%). Clinical examination showed that 449 (39.18%) cases exhibited C-shaped canal systems (C1, 22.94%; C2, 48.11%; C3a, 15.59%; C3b, 13.36%). As for the result of the radiographic and clinical combined examination, C-shaped root canals were found in 473 (41.27%) mandibular second molars (C1, 21.78%; C2, 45.67%; C3a, 16.70%; C3b, 15.86%). The incidence of C-shaped root canal diagnosed by radiographic method was statistically different from that by clinical examination and the combined examination (P〈O.05). The study indicated a high incidence of C-shaped canal system in a Chinese population. The combination of microscopic and radiographic examination is an effective method in identifying the C-shaped root canal system.展开更多
In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the ...In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.展开更多
Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with t...Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.展开更多
In this work, computational fluid dynamics (CFD)—based simulations and linear diffraction analysis are carried out to investigate the interaction between water waves and metamaterials composed of an array of C-shaped...In this work, computational fluid dynamics (CFD)—based simulations and linear diffraction analysis are carried out to investigate the interaction between water waves and metamaterials composed of an array of C-shaped cylinders. The flow visualization by CFD-based simulations reveals that local resonance is a result of constructive interference between the incident wave and the wave radiated from the cavity of the C-shaped cylinder. The wave-induced water motion inside the cavity acts as a source of generating this radiated wave, which has the same angular wave frequency and wavenumber but opposite propagation direction as the incident wave. In addition, it is found from the CFD-based simulations that the energy dissipation increases as the opening of the C-shaped cylinder becomes shorter and sharper, along with an increase in its outer radius, and the variation trend of energy dissipation is only affected by the outer radius. Meanwhile, except for very small opening lengths, variations in opening length, width, and outer radius do not significantly impact the wave attenuation effect of the C-shaped cylinder array. Moreover, the results obtained by CFD and the linear potential flow model are compared. The linear potential flow theory is proven to be a reliable approach for accurately predicting the local resonant frequency and transmission coefficients within the local resonant band across a range of geometric parameters. However, it is noted that this theory may have limitations when applied to cases with extremely small opening lengths, where it struggles to accurately predict the local resonant frequency and the intensity of local resonance.展开更多
Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and second...Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system(PRHRS)determine the capacity to remove core decay heat during the accidents.Therefore,it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design.In the present paper,an overall scaled-down natural circulation loop of PRHRS in AP1000,which comprises a scaleddown in-containment refueling water storage tank(IRWST)and PRHR HX models and a simulator of the reactor core,is built to simulate the natural circulation process in residual heat removal accidents.A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes.For the local PRHR HX heat transfer performance,traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition.Moreover,the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles.This paper provides essential references for the PRHRS operation and further optimized design.展开更多
基金supported by the grant from the Independent Innovation Foundation of Shandong University of China (No. 2011JC019)the grant of Science and Technique Development Foundation of Shandong province(2010G0020230)
文摘The aims of the study were to investigate the incidence of C-shaped root canal systems in mandibular second molars in a native Chinese population using radiography and clinical examination under microscope and to compare the relative efficacies of these methods. For the recognition of C-shaped root canal system, 1 146 mandibular second molars were selected and examined. Teeth with C-shaped canal systems were categorized by using the radiographic classification criteria and the modified Melton's method. C-shaped canals were identified in 397 (34.64%) mandibular second molars by radiography (type I, 31.23%; type II, 38.29%; type III, 30.48%). Clinical examination showed that 449 (39.18%) cases exhibited C-shaped canal systems (C1, 22.94%; C2, 48.11%; C3a, 15.59%; C3b, 13.36%). As for the result of the radiographic and clinical combined examination, C-shaped root canals were found in 473 (41.27%) mandibular second molars (C1, 21.78%; C2, 45.67%; C3a, 16.70%; C3b, 15.86%). The incidence of C-shaped root canal diagnosed by radiographic method was statistically different from that by clinical examination and the combined examination (P〈O.05). The study indicated a high incidence of C-shaped canal system in a Chinese population. The combination of microscopic and radiographic examination is an effective method in identifying the C-shaped root canal system.
基金supported by the Key Basic Research Projects of Basic Strengthening Plan under Grants 2017-JCJQ-ZD-004
文摘In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.
文摘Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260 and 52371263).
文摘In this work, computational fluid dynamics (CFD)—based simulations and linear diffraction analysis are carried out to investigate the interaction between water waves and metamaterials composed of an array of C-shaped cylinders. The flow visualization by CFD-based simulations reveals that local resonance is a result of constructive interference between the incident wave and the wave radiated from the cavity of the C-shaped cylinder. The wave-induced water motion inside the cavity acts as a source of generating this radiated wave, which has the same angular wave frequency and wavenumber but opposite propagation direction as the incident wave. In addition, it is found from the CFD-based simulations that the energy dissipation increases as the opening of the C-shaped cylinder becomes shorter and sharper, along with an increase in its outer radius, and the variation trend of energy dissipation is only affected by the outer radius. Meanwhile, except for very small opening lengths, variations in opening length, width, and outer radius do not significantly impact the wave attenuation effect of the C-shaped cylinder array. Moreover, the results obtained by CFD and the linear potential flow model are compared. The linear potential flow theory is proven to be a reliable approach for accurately predicting the local resonant frequency and transmission coefficients within the local resonant band across a range of geometric parameters. However, it is noted that this theory may have limitations when applied to cases with extremely small opening lengths, where it struggles to accurately predict the local resonant frequency and the intensity of local resonance.
基金the National Science and Technology Major Project of China(Grant No.2017ZX06004002-006-002)the National Natural Science Foundation of China(Grant No.51906069)。
文摘Passive residual heat removal heat exchanger(PRHR HX),which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400,plays an important role in critical accidental conditions.The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system(PRHRS)determine the capacity to remove core decay heat during the accidents.Therefore,it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design.In the present paper,an overall scaled-down natural circulation loop of PRHRS in AP1000,which comprises a scaleddown in-containment refueling water storage tank(IRWST)and PRHR HX models and a simulator of the reactor core,is built to simulate the natural circulation process in residual heat removal accidents.A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes.For the local PRHR HX heat transfer performance,traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition.Moreover,the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles.This paper provides essential references for the PRHRS operation and further optimized design.