The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits ...The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.展开更多
A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.Acc...A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.展开更多
Objective: To compare the effectiveness and safety of two surgical methods for lumbar degenerative diseases;the combination of the concept of accelerated rehabilitation with the assistance of Tianji Robotics and the c...Objective: To compare the effectiveness and safety of two surgical methods for lumbar degenerative diseases;the combination of the concept of accelerated rehabilitation with the assistance of Tianji Robotics and the concept of accelerated rehabilitation combined with manual pedicle screw placement assisted by conventional C-arm fluoroscopy. Methods: A retrospective analysis was performed on 70 patients who received the concept of accelerated rehabilitation combined with spinal surgery for lumbar degenerative diseases in Baise People’s Hospital from January 2022 to January 2024. Among them, 35 patients in the robot group received accelerated rehabilitation concept combined with robot-assisted surgery;In the conventional C-arm group, 35 patients received the accelerated rehabilitation concept combined with manual pedicle screw placement assisted by conventional C-arm fluoroscopy. VAS score (preoperative/postoperative), ODI score (preoperative/postoperative), intraoperative bleeding volume, postoperative hospital stay, postoperative complications and the accuracy rate of screw placement were compared between the two groups. Result: There was no statistically significant difference in preoperative VAS scores between the robot group and the conventional C-arm group (6.45 ± 0.82 VS 6.63 ± 0.81, P = 0.6600). The postoperative VAS score of the robot group was better than that of the conventional C-arm group (1.69 ± 0.80 VS 2.45 ± 0.85, P = 0.0000*). There was no statistically significant difference in preoperative ODI scores between the robot group and the conventional C-arm group (32.11 ± 3.18 VS 31.66 ± 2.25, P = 0.4900). The postoperative ODI score of the robot group was better than that of the conventional C-arm group (22.68 ± 1.94 VS 24.57 ± 2.25, P = 0.0000*). The postoperative complications in the robot group were less than those in the conventional C-arm group (2.7778% VS 28.5724%, P = 0.0030*). The intraoperative bleeding in the robot group was lower than that in the conventional C-arm group (320.85 ± 276.28 VS 490.00 ± 395.34, P = 0.0420*). The postoperative hospital stay of the robot group was shorter than that of the conventional C-arm group (10.00 ± 9.32 VS 14.49 ± 7.55, P = 0.0300*). The screw placement inaccuracy score of the robot group was lower than that of the conventional C-arm group (0.17 ± 0.51 VS 1.45 ± 1.46, P = 0.0000*). Conclusion: The combination of the concept of accelerated rehabilitation and Tianji Orthopedic robot-assisted surgery is more effective and safer in posterior lumbar decompression and internal fixation surgery with a screw rod system, and is worthy of promotion and application.展开更多
Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon ...Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon energies and five electron energies was commissioned in early 2010. Daily Linac QA tests including the output constancy, beam flatness and symmetry (radial and transverse directions) were performed with an ionization chamber array device (QA Beam Checker Plus, Standard Imaging). The data of five years were collected and analyzed. For each energy, the measured data were exported and processed for visual trending using an in-house Matlab program. These daily data were cross-correlated with the monthly QA and annual QA results, as well as the preventive maintenance records. Majority of the output were within 1% of variation, with a consistent positive/upward drift for all seven energies (^+0.25% per month). The baseline of daily device is reset annually right after the TG-51 calibration. This results in a sudden drop of the output. On the other hand, the large amount of data using the same baseline exhibits a sinusoidal behavior (period = 12 months;amplitude = 0.8%, 0.5% for photons, electrons, respectively) on symmetry and flatness when normalization of baselines is accounted for. The well known phenomenon of new Linac output drift was clearly displayed. This output drift was a result of the air leakage of the over-pressurized sealed monitor chambers for the specific vendor. Data visualization is a new trend in the era of big data in radiation oncology research. It allows the data to be displayed visually and therefore more intuitive. Based on the visual display from the past, the physicist might predict the trend of the Linac and take actions proactively. It also makes comparisons, alerts failures, and potentially identifies causalities.展开更多
AIM:To investigate the value of C-arm Lipiodol computed tomography(CT) for intra-procedural hepatocellular carcinoma(HCC) lesion detection during transcatheter arterial chemoembolization(TACE).METHODS:Forty patients(3...AIM:To investigate the value of C-arm Lipiodol computed tomography(CT) for intra-procedural hepatocellular carcinoma(HCC) lesion detection during transcatheter arterial chemoembolization(TACE).METHODS:Forty patients(37 male,3 female;mean age,52.6 ± 12.5 years,age range:25-82 years) diagnosed with HCC were enrolled in this study.All patients underwent 64-slice CT 1-2 wk before TACE.During the procedure,hepatic angiography was performed first.Following diagnostic embolization with Lipiodol injected into the hepatic artery,a C-arm CT scan was immediately conducted(C-arm Lipiodol CT).If new HCC lesions were confirmed,gelfoam particles were super-selectively injected into the tumor-nourishing blood vessel.A Lipiodol CT scan was performed 7-14 d after TACE.All images acquired from 64-slice CT,digital subtraction angiography(DSA),C-arm Lipiodol CT and Lipiodol CT were retrospectively reviewed by four radiologists and the number of detected lesions in each examination was counted,respectively.The results of Lipiodol CT were taken as the diagnostic reference.Alpha-fetoprotein values were examined both before and after TACE.This study only takes into account the lesions that were not found or were considered suspicious on 64-slice CT before TACE.RESULTS:Preprocedural 64-slice CT detected a total of 13 suspicious lesions in the 40 patients.DSA detected ten definite and four suspicious lesions.C-arm Lipiodol CT detected 71 lesions in total and Lipiodol CT confirmed 67 lesions with a diameter range of 3-12 mm.Four false-positive lesions,which were detected by C-arm Lipiodol CT,were considered to be hepatic artery-portal vein fistulas.The average alpha-fetoprotein values before and after TACE were significantly different(452.3 ± 192.6 ng/m L vs 223.8 ± 93.2 ng/m L;P = 0.039).CONCLUSION:C-arm Lipiodol CT has a higher diagnostic sensitivity for small HCC lesions.This technique may help physicians make intraproceduraldecisions to provide patients with earlier treatment.展开更多
As an advanced treatment method in the past five years,ultra-high dose rate(FLASH)radiotherapy as a breakthrough and milestone in radiotherapy development has been verified to be much less harmful to healthy tissues i...As an advanced treatment method in the past five years,ultra-high dose rate(FLASH)radiotherapy as a breakthrough and milestone in radiotherapy development has been verified to be much less harmful to healthy tissues in different experiments.FLASH treatments require an instantaneous dose rate as high as hundreds of grays per second to complete the treatment in less than 100 ms.Current proton therapy facilities with the spread-out of the Bragg peak formed by different energy layers,to our knowledge,cannot easily achieve an adequate dose rate for FLASH treatments because the energy layer switch or gantry rotation of current facilities requires a few seconds,which is relatively long.A new design for a therapy facility based on a proton linear accelerator(linac)for FLASH treatment is proposed herein.It is designed under two criteria:no mechanical motion and no magnetic field variation.The new therapy facility can achieve an ultrahigh dose rate of up to 300 Gy/s;however,it delivers an instantaneous dose of 30 Gy within 100 ms to complete a typical FLASH treatment.The design includes a compact proton linac with permanent magnets,a fast beam kicker in both azimuth and elevation angles,a fixed gantry with a static superconducting coil to steer proton bunches with all energy,a fast beam scanner using radio-frequency(RF)deflectors,and a fast low-level RF system.All relevant principles and conceptual proposals are presented herein.展开更多
The parameters of beam transverse positions at HLS 200 MeV LINAC are very important to injection ef-ficiency. We have designed a new non-interceptive strip line beam position monitor (BPM) as a substitution for the or...The parameters of beam transverse positions at HLS 200 MeV LINAC are very important to injection ef-ficiency. We have designed a new non-interceptive strip line beam position monitor (BPM) as a substitution for the original interceptive fluorescent target. This paper gives out the theoretical analysis and bench test result of the strip line BPM. The BPM has a characteristic impedance of (50±5)?, a reflection coefficient of less than –4 dB, a band-width of 400 MHz, a coupling coefficient of less than -15 dB, and a sensitivity of 1.16 dB/mm. Additionally, the strip line BPM has a good linearity.展开更多
Purpose: The isocenter of a medical linac system is a frequently used concept in clinical practice. However, so far not all the isocenters are rigorously defined. This work is intended as an attempt of deriving consis...Purpose: The isocenter of a medical linac system is a frequently used concept in clinical practice. However, so far not all the isocenters are rigorously defined. This work is intended as an attempt of deriving consistent and operable isocenter definitions. Methods: The isocenter definition is based on a fundamental concept, the axis of rotation of a rigid body. The axis of rotation is determined using the trajectory of any point on a plane that intersects the rigid body. A point on the axis of rotation is found through the minimal bounding sphere of the trajectory when the rigid body makes a full rotation. The essential mathematical tool of the isocenter definition system is three-dimensional coordinate transformation. Results: The axes of rotation of the linac collimator, gantry, and couch are established first. The linac mechanical isocenter (linac isocenter) is defined as the center of a circle that best fits the trajectory of a select linac X-ray source position. The axis of rotation and the minimal bounding sphere are cornerstones for the rotation isocenters of the collimator, gantry and couch. The definition of radiation isocenter incorporates a surrogate of the useful beam axis. Conclusions: A framework of isocenter definitions for medical linacs is presented in this manuscript. Consistent meanings of the mechanical and radiation isocenters can be achieved using this approach.展开更多
A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-curre...A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-current linac.It consists of an alternating series of crossbar H-type drift tubes and RF quadrupole sections.Owing to its special geometry,cavity fabrication is a major hurdle for its engineering development and application.In this paper,we report the detailed mechanical design of this structure and describe its fabrication process,including machining,assembly,and inspection.The field distribution was measured by the bead-pull technique.The results show that the field errors of both the accelerating and focusing fields are within an acceptable range.A tuning scheme for this new structure is proposed and verified.The cold test process and results are presented in detail.The development of this prototype provides valuable guidance for the application of the spatially periodic RF quadrupole structure.展开更多
The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The t...The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.展开更多
The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conduct...The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conducting(SC)linear accelerator(linac)for the ADS project in China.The injector adopted a four-vane copper structure radio frequency quadrupole(RFQ)with an output energy of 3.2 MeV and an SC section accommodating 14 β_(g)=0.12 single spoke cavities,14 SC solenoids,and 14 cold beam position monitors(BPMs).A 10-MeV pulsed beam with a beam current of 10 mA and a 2-mA continuous wave(CW)beam were successfully shooting through.The commissioning results confirmed the feasibility of using a 325-MHz spoke-type cavity for accelerating the proton beam in the low β and medium β sections.This paper describes the results achieved,the difficulties encountered,and the experiences obtained during commissioning.展开更多
To upgrade Hefei Light Source(HLS) Linac, eight accelerating units have been constructed to realize fullenergy injection of the storage ring. Each of the units consists of two 3-m accelerators driven by one klystron.T...To upgrade Hefei Light Source(HLS) Linac, eight accelerating units have been constructed to realize fullenergy injection of the storage ring. Each of the units consists of two 3-m accelerators driven by one klystron.The input cavity detuning method was developed to measure and correct the phase length of the RF power distribution waveguide system. The design of the waveguide network and the principles of the detuning method are presented in this paper. After correction, the phase error between the waveguide of the two accelerators was less than ±0.5?, and the maximum electron energy of Linac reached 805 MeV, which is very near the theoretical maximum value of 810 MeV. These results demonstrate that the calibration of the waveguide was successful.展开更多
High brightness electron beam is one of the main goals of the research and development effort in RF photo-injectors.Compared with the normally used magnetic chicane,an alternative scheme,commonly known as 'velocit...High brightness electron beam is one of the main goals of the research and development effort in RF photo-injectors.Compared with the normally used magnetic chicane,an alternative scheme,commonly known as 'velocity bunching',has been proposed as a tool to compress electron beam pulses in modern high brightness photo-injector sources.This paper presents numerical optimization systematically and the first attempt to demonstrate the velocity bunching scheme on SDUV-FEL linac experimentally.The relationship between the degree of bunching and the off-crest phase of the accelerating structure is explored experimentally.Velocity bunching operating mode illustrates flexible performances with an intrinsic machine jitter,which agrees well with the theoretical prediction.展开更多
The upgrade project of the Beijing Electron Positron Collider (BEPCII) and its injector linac is working well. The linac upgrade aims at a higher injection rate of 5OmA/min into the storage ring, which requires an i...The upgrade project of the Beijing Electron Positron Collider (BEPCII) and its injector linac is working well. The linac upgrade aims at a higher injection rate of 5OmA/min into the storage ring, which requires an injected beam with low emittance, low energy spread and high beam orbit and energy stabilities. This goal is finally reached recently by upgrading the linac components and by dealing with rich and practical beam physics, which are described in this study.展开更多
文摘The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.
文摘A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.
文摘Objective: To compare the effectiveness and safety of two surgical methods for lumbar degenerative diseases;the combination of the concept of accelerated rehabilitation with the assistance of Tianji Robotics and the concept of accelerated rehabilitation combined with manual pedicle screw placement assisted by conventional C-arm fluoroscopy. Methods: A retrospective analysis was performed on 70 patients who received the concept of accelerated rehabilitation combined with spinal surgery for lumbar degenerative diseases in Baise People’s Hospital from January 2022 to January 2024. Among them, 35 patients in the robot group received accelerated rehabilitation concept combined with robot-assisted surgery;In the conventional C-arm group, 35 patients received the accelerated rehabilitation concept combined with manual pedicle screw placement assisted by conventional C-arm fluoroscopy. VAS score (preoperative/postoperative), ODI score (preoperative/postoperative), intraoperative bleeding volume, postoperative hospital stay, postoperative complications and the accuracy rate of screw placement were compared between the two groups. Result: There was no statistically significant difference in preoperative VAS scores between the robot group and the conventional C-arm group (6.45 ± 0.82 VS 6.63 ± 0.81, P = 0.6600). The postoperative VAS score of the robot group was better than that of the conventional C-arm group (1.69 ± 0.80 VS 2.45 ± 0.85, P = 0.0000*). There was no statistically significant difference in preoperative ODI scores between the robot group and the conventional C-arm group (32.11 ± 3.18 VS 31.66 ± 2.25, P = 0.4900). The postoperative ODI score of the robot group was better than that of the conventional C-arm group (22.68 ± 1.94 VS 24.57 ± 2.25, P = 0.0000*). The postoperative complications in the robot group were less than those in the conventional C-arm group (2.7778% VS 28.5724%, P = 0.0030*). The intraoperative bleeding in the robot group was lower than that in the conventional C-arm group (320.85 ± 276.28 VS 490.00 ± 395.34, P = 0.0420*). The postoperative hospital stay of the robot group was shorter than that of the conventional C-arm group (10.00 ± 9.32 VS 14.49 ± 7.55, P = 0.0300*). The screw placement inaccuracy score of the robot group was lower than that of the conventional C-arm group (0.17 ± 0.51 VS 1.45 ± 1.46, P = 0.0000*). Conclusion: The combination of the concept of accelerated rehabilitation and Tianji Orthopedic robot-assisted surgery is more effective and safer in posterior lumbar decompression and internal fixation surgery with a screw rod system, and is worthy of promotion and application.
文摘Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon energies and five electron energies was commissioned in early 2010. Daily Linac QA tests including the output constancy, beam flatness and symmetry (radial and transverse directions) were performed with an ionization chamber array device (QA Beam Checker Plus, Standard Imaging). The data of five years were collected and analyzed. For each energy, the measured data were exported and processed for visual trending using an in-house Matlab program. These daily data were cross-correlated with the monthly QA and annual QA results, as well as the preventive maintenance records. Majority of the output were within 1% of variation, with a consistent positive/upward drift for all seven energies (^+0.25% per month). The baseline of daily device is reset annually right after the TG-51 calibration. This results in a sudden drop of the output. On the other hand, the large amount of data using the same baseline exhibits a sinusoidal behavior (period = 12 months;amplitude = 0.8%, 0.5% for photons, electrons, respectively) on symmetry and flatness when normalization of baselines is accounted for. The well known phenomenon of new Linac output drift was clearly displayed. This output drift was a result of the air leakage of the over-pressurized sealed monitor chambers for the specific vendor. Data visualization is a new trend in the era of big data in radiation oncology research. It allows the data to be displayed visually and therefore more intuitive. Based on the visual display from the past, the physicist might predict the trend of the Linac and take actions proactively. It also makes comparisons, alerts failures, and potentially identifies causalities.
基金Supported by Funding from the Chinese Ministry of Science and Technology,No.2012BAI15B08International Cooperation Projects of the Ministry of Science and Technology,No.2012DFA30850
文摘AIM:To investigate the value of C-arm Lipiodol computed tomography(CT) for intra-procedural hepatocellular carcinoma(HCC) lesion detection during transcatheter arterial chemoembolization(TACE).METHODS:Forty patients(37 male,3 female;mean age,52.6 ± 12.5 years,age range:25-82 years) diagnosed with HCC were enrolled in this study.All patients underwent 64-slice CT 1-2 wk before TACE.During the procedure,hepatic angiography was performed first.Following diagnostic embolization with Lipiodol injected into the hepatic artery,a C-arm CT scan was immediately conducted(C-arm Lipiodol CT).If new HCC lesions were confirmed,gelfoam particles were super-selectively injected into the tumor-nourishing blood vessel.A Lipiodol CT scan was performed 7-14 d after TACE.All images acquired from 64-slice CT,digital subtraction angiography(DSA),C-arm Lipiodol CT and Lipiodol CT were retrospectively reviewed by four radiologists and the number of detected lesions in each examination was counted,respectively.The results of Lipiodol CT were taken as the diagnostic reference.Alpha-fetoprotein values were examined both before and after TACE.This study only takes into account the lesions that were not found or were considered suspicious on 64-slice CT before TACE.RESULTS:Preprocedural 64-slice CT detected a total of 13 suspicious lesions in the 40 patients.DSA detected ten definite and four suspicious lesions.C-arm Lipiodol CT detected 71 lesions in total and Lipiodol CT confirmed 67 lesions with a diameter range of 3-12 mm.Four false-positive lesions,which were detected by C-arm Lipiodol CT,were considered to be hepatic artery-portal vein fistulas.The average alpha-fetoprotein values before and after TACE were significantly different(452.3 ± 192.6 ng/m L vs 223.8 ± 93.2 ng/m L;P = 0.039).CONCLUSION:C-arm Lipiodol CT has a higher diagnostic sensitivity for small HCC lesions.This technique may help physicians make intraproceduraldecisions to provide patients with earlier treatment.
基金This work was supported by the Alliance of International Science Organizations(No.ANSO-CR-KP-2020-16)the National Key R&D Program of China(No.2018YFF0109203).
文摘As an advanced treatment method in the past five years,ultra-high dose rate(FLASH)radiotherapy as a breakthrough and milestone in radiotherapy development has been verified to be much less harmful to healthy tissues in different experiments.FLASH treatments require an instantaneous dose rate as high as hundreds of grays per second to complete the treatment in less than 100 ms.Current proton therapy facilities with the spread-out of the Bragg peak formed by different energy layers,to our knowledge,cannot easily achieve an adequate dose rate for FLASH treatments because the energy layer switch or gantry rotation of current facilities requires a few seconds,which is relatively long.A new design for a therapy facility based on a proton linear accelerator(linac)for FLASH treatment is proposed herein.It is designed under two criteria:no mechanical motion and no magnetic field variation.The new therapy facility can achieve an ultrahigh dose rate of up to 300 Gy/s;however,it delivers an instantaneous dose of 30 Gy within 100 ms to complete a typical FLASH treatment.The design includes a compact proton linac with permanent magnets,a fast beam kicker in both azimuth and elevation angles,a fixed gantry with a static superconducting coil to steer proton bunches with all energy,a fast beam scanner using radio-frequency(RF)deflectors,and a fast low-level RF system.All relevant principles and conceptual proposals are presented herein.
基金Supported by Project of Building a High-level University Well-known Both in China and in the World (KY2901), and Project of Hi-tech Research and Development Program of China (863-410-8-2)
文摘The parameters of beam transverse positions at HLS 200 MeV LINAC are very important to injection ef-ficiency. We have designed a new non-interceptive strip line beam position monitor (BPM) as a substitution for the original interceptive fluorescent target. This paper gives out the theoretical analysis and bench test result of the strip line BPM. The BPM has a characteristic impedance of (50±5)?, a reflection coefficient of less than –4 dB, a band-width of 400 MHz, a coupling coefficient of less than -15 dB, and a sensitivity of 1.16 dB/mm. Additionally, the strip line BPM has a good linearity.
文摘Purpose: The isocenter of a medical linac system is a frequently used concept in clinical practice. However, so far not all the isocenters are rigorously defined. This work is intended as an attempt of deriving consistent and operable isocenter definitions. Methods: The isocenter definition is based on a fundamental concept, the axis of rotation of a rigid body. The axis of rotation is determined using the trajectory of any point on a plane that intersects the rigid body. A point on the axis of rotation is found through the minimal bounding sphere of the trajectory when the rigid body makes a full rotation. The essential mathematical tool of the isocenter definition system is three-dimensional coordinate transformation. Results: The axes of rotation of the linac collimator, gantry, and couch are established first. The linac mechanical isocenter (linac isocenter) is defined as the center of a circle that best fits the trajectory of a select linac X-ray source position. The axis of rotation and the minimal bounding sphere are cornerstones for the rotation isocenters of the collimator, gantry and couch. The definition of radiation isocenter incorporates a surrogate of the useful beam axis. Conclusions: A framework of isocenter definitions for medical linacs is presented in this manuscript. Consistent meanings of the mechanical and radiation isocenters can be achieved using this approach.
基金This work was supported by the NSAF Joint Foundation of China(No.U1730122)。
文摘A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-current linac.It consists of an alternating series of crossbar H-type drift tubes and RF quadrupole sections.Owing to its special geometry,cavity fabrication is a major hurdle for its engineering development and application.In this paper,we report the detailed mechanical design of this structure and describe its fabrication process,including machining,assembly,and inspection.The field distribution was measured by the bead-pull technique.The results show that the field errors of both the accelerating and focusing fields are within an acceptable range.A tuning scheme for this new structure is proposed and verified.The cold test process and results are presented in detail.The development of this prototype provides valuable guidance for the application of the spatially periodic RF quadrupole structure.
文摘The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.
基金This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030201)the Key Laboratory of Particle Acceleration Physics and Technology Autonomous Foundation of CAS China(No.JSQ2017ZZ01).
文摘The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conducting(SC)linear accelerator(linac)for the ADS project in China.The injector adopted a four-vane copper structure radio frequency quadrupole(RFQ)with an output energy of 3.2 MeV and an SC section accommodating 14 β_(g)=0.12 single spoke cavities,14 SC solenoids,and 14 cold beam position monitors(BPMs).A 10-MeV pulsed beam with a beam current of 10 mA and a 2-mA continuous wave(CW)beam were successfully shooting through.The commissioning results confirmed the feasibility of using a 325-MHz spoke-type cavity for accelerating the proton beam in the low β and medium β sections.This paper describes the results achieved,the difficulties encountered,and the experiences obtained during commissioning.
基金Supported by National Natural Science Foundation of China(No.11079034)
文摘To upgrade Hefei Light Source(HLS) Linac, eight accelerating units have been constructed to realize fullenergy injection of the storage ring. Each of the units consists of two 3-m accelerators driven by one klystron.The input cavity detuning method was developed to measure and correct the phase length of the RF power distribution waveguide system. The design of the waveguide network and the principles of the detuning method are presented in this paper. After correction, the phase error between the waveguide of the two accelerators was less than ±0.5?, and the maximum electron energy of Linac reached 805 MeV, which is very near the theoretical maximum value of 810 MeV. These results demonstrate that the calibration of the waveguide was successful.
基金Supported by Major State Basic Research Development Program of China (973 Program) (Grant No.2011CB808300)
文摘High brightness electron beam is one of the main goals of the research and development effort in RF photo-injectors.Compared with the normally used magnetic chicane,an alternative scheme,commonly known as 'velocity bunching',has been proposed as a tool to compress electron beam pulses in modern high brightness photo-injector sources.This paper presents numerical optimization systematically and the first attempt to demonstrate the velocity bunching scheme on SDUV-FEL linac experimentally.The relationship between the degree of bunching and the off-crest phase of the accelerating structure is explored experimentally.Velocity bunching operating mode illustrates flexible performances with an intrinsic machine jitter,which agrees well with the theoretical prediction.
文摘The upgrade project of the Beijing Electron Positron Collider (BEPCII) and its injector linac is working well. The linac upgrade aims at a higher injection rate of 5OmA/min into the storage ring, which requires an injected beam with low emittance, low energy spread and high beam orbit and energy stabilities. This goal is finally reached recently by upgrading the linac components and by dealing with rich and practical beam physics, which are described in this study.