期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Novel High Temperature Apparatus for in situ Synchrotron X-ray Diffraction Studies of Molten Salt
1
作者 CAO Hui-li GAO Mei +5 位作者 Andebet G.Tamirat ZHAO Hong-bin ZHOU Xing-tai HUANG Yu-ying LEI Qi WEN Wen 《分析测试学报》 CAS CSCD 北大核心 2024年第10期1608-1617,共10页
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee... This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility. 展开更多
关键词 in-situ x-ray diffraction rotary micro-diffractometer rotary high-temperature apparatus molten salt
下载PDF
Radiation Protection of a Patient Undergoing an Orthopedic Procedure by Using a Mobile C-Arm X-Ray System 被引量:1
2
作者 Natasha Ivanova 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2020年第3期141-156,共16页
Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures t... Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest. 展开更多
关键词 c-arm x-ray Equipment Radiation Protection PATIENT Orthopedics and Traumatology Clinic
下载PDF
A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning 被引量:3
3
作者 Zhuang CHENG Jianfeng WANG +1 位作者 Matthew Richard COOP Guanlin YE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第2期357-373,共17页
The development of a miniature triaxial apparatus is presented.In conjunction with an X-ray microtomography(termed as X-ray fiCT hereafter)facility and advanced image processing techniques,this apparatus can be used f... The development of a miniature triaxial apparatus is presented.In conjunction with an X-ray microtomography(termed as X-ray fiCT hereafter)facility and advanced image processing techniques,this apparatus can be used for in situ investigation of the micro-scale mechanical behavior of granular soils under shear.The apparatus allows for triaxial testing of a miniature dry sample with a size of 8 mm x 16 mm(diameter x height).In situ triaxial testing of a 0.4-0.8 mm Leighton Buzzard sand(LBS)under a constant confining pressure of 500 kPa is presented.The evolutions of local porosities(i.e.,the porosities of regions associated with individual particles),particle kinematics(i.e.,particle translation and particle rotation)of the sample during the shear are quantitatively studied using image processing and analysis techniques.Meanwhile,a novel method is presented to quantify the volumetric strain distribution of the sample based on the results of local porosities and particle tracking.It is found that the sample,with nearly homogenous initial local porosities,starts to exhibit obvious inhomogeneity of local porosities and localization of particle kinematics and volumetric strain around the peak of deviatoric stress.In the post-peak shear stage,large local porosities and volumetric dilation mainly occur in a localized band.The developed triaxial apparatus,in its combined use of X-ray|iCT imaging techniques,is a powerful tool to investigate the micro-scale mechanical behavior of granular soils. 展开更多
关键词 triaxial apparatus x-ray fiCT in situ test micro-scale mechanical behavior granular soils
原文传递
Tensile-WAXD Apparatus:An Improved and Accurate System for the In situ Study of Extension-induced Segmental Orientation in Highly Stretched Elastomer
4
作者 Xiang Shi 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第12期2002-2010,I0011,共10页
An improved X-ray apparatus that combines tensile testing and X-ray diffraction has been designed and constructed to conduct timeresolved experiments during uniaxial stretching.By utilizing mortise-like clamping jaws ... An improved X-ray apparatus that combines tensile testing and X-ray diffraction has been designed and constructed to conduct timeresolved experiments during uniaxial stretching.By utilizing mortise-like clamping jaws and dogbone-shaped specimens,this setup allows for the simultaneous recording of high-quality mechanical responses and 2D diffraction patterns due to the minimization of experimental errors from sample slippage or premature fracture.Furthermore,the local extension ratio can be accurately determined based on thickness variation,and the Hermans'orientation function was demonstrated to be a reliable method with high accuracy to calculate the segmental orientation parameter〈P_(2)〉in elastomeric samples under high degree of stretching.In summary,this innovative tensile-WAXD instrument has proven to be a promising and powerful technique for investigating the“stress-deformation-segmental orientation”relationship in elastomers with high extensibilities. 展开更多
关键词 x-ray apparatus Elongation calculation Segmental orientation In situ measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部