In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform,an image quality phantom,and a kV X-ray CBCT.A total of 21 motion states in the s...In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform,an image quality phantom,and a kV X-ray CBCT.A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction,separately or together,was simulated by considering different respiration amplitudes,periods and hysteresis.The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility,geometric accuracy,spatial resolution and uniformity of CT values.The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction,and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis.The CBCT image quality and its characteristics influenced by the respiration motion,and may be exploited in finding solutions.展开更多
In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection trun...In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.展开更多
Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp ...Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.展开更多
Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-r...Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.展开更多
CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the...CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the flat panel detector can be placed off-center horizontally.This scanning configuration extends the FOV effectively.However,each projection is transversely truncated,bringing errors and artifacts in reconstruction.In this paper,a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm.Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method.A novel CBCT system for maxillofacial imaging is used for clinical test,which is equipped with an off-center small size flat panel detector.Results show that reconstruction accuracy is acceptable for clinical use,and the image quality appears sufficient for specific diagnostic requirements.It provides a novel solution for clinical CBCT system,in order to reduce radiation dose and manufacturing cost.展开更多
目的 对锥光束乳腺CT(cone-beam breast com p uted tomogra phy,CBBCT)引导定位活检图像的质量进行评价并分析如何控制图像质量。方法 回顾性随机选取我院2019年7月至2021年12月期间33例行CBBCT引导乳腺病灶定位活检的CBBCT定位活检图...目的 对锥光束乳腺CT(cone-beam breast com p uted tomogra phy,CBBCT)引导定位活检图像的质量进行评价并分析如何控制图像质量。方法 回顾性随机选取我院2019年7月至2021年12月期间33例行CBBCT引导乳腺病灶定位活检的CBBCT定位活检图像,由2名有经验的放射科医生采用5分赋值法评价CBBCT引导活检的图像质量,采用Kappa检验比较两者评估结果 的一致性。结果 医生A、B分别认为有26例(78.79%)28例(84.85%)达到4分以上,定位活检图像质量符合病灶定位需求,两名医师对图像质量评估具有高度一致性(Kappa=0.712),两者差异具有统计学意义(P<0.001)。结论 CBBCT引导定位活检图像质量良好,可准确引导定位,满足医师对乳腺病灶定位需求。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10975187)and clinic research grant(No.LC2009B34)from the Cancer Institute
文摘In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform,an image quality phantom,and a kV X-ray CBCT.A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction,separately or together,was simulated by considering different respiration amplitudes,periods and hysteresis.The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility,geometric accuracy,spatial resolution and uniformity of CT values.The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction,and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis.The CBCT image quality and its characteristics influenced by the respiration motion,and may be exploited in finding solutions.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA011603)National Nature Science Foundation of China(No.61372172)
文摘In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.
基金supported by the National Natural Science Foundation of China(Nos.61771279,11435007)the National Key Research and Development Program of China(No.2016YFF0101304)
文摘Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-208 and lzujbky-2016-32)
文摘Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.
基金Supported by National Key Technology R&D Program of the Ministry of Science and Technology(No.2012BAI07B05)
文摘CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the flat panel detector can be placed off-center horizontally.This scanning configuration extends the FOV effectively.However,each projection is transversely truncated,bringing errors and artifacts in reconstruction.In this paper,a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm.Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method.A novel CBCT system for maxillofacial imaging is used for clinical test,which is equipped with an off-center small size flat panel detector.Results show that reconstruction accuracy is acceptable for clinical use,and the image quality appears sufficient for specific diagnostic requirements.It provides a novel solution for clinical CBCT system,in order to reduce radiation dose and manufacturing cost.
文摘目的 对锥光束乳腺CT(cone-beam breast com p uted tomogra phy,CBBCT)引导定位活检图像的质量进行评价并分析如何控制图像质量。方法 回顾性随机选取我院2019年7月至2021年12月期间33例行CBBCT引导乳腺病灶定位活检的CBBCT定位活检图像,由2名有经验的放射科医生采用5分赋值法评价CBBCT引导活检的图像质量,采用Kappa检验比较两者评估结果 的一致性。结果 医生A、B分别认为有26例(78.79%)28例(84.85%)达到4分以上,定位活检图像质量符合病灶定位需求,两名医师对图像质量评估具有高度一致性(Kappa=0.712),两者差异具有统计学意义(P<0.001)。结论 CBBCT引导定位活检图像质量良好,可准确引导定位,满足医师对乳腺病灶定位需求。