The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ...The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.展开更多
This work describes stereoselective preparation ofβ-C-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and vinylation of C1-glucosyl halides with aryl and vinyl halides.A broad range of aryl halides an...This work describes stereoselective preparation ofβ-C-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and vinylation of C1-glucosyl halides with aryl and vinyl halides.A broad range of aryl halides and vinyl halides were employed to yield C-aryl/vinyl glucosides in 42%–93%yields.Good to excellentβ-selectivities were obtained for C-glucosides by using tridentate ligand.展开更多
This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the con...This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.展开更多
Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits the...Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.展开更多
Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation d...Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
本文对比了乙烯基树脂浇注体和乙烯基团状模塑料(乙烯基BMC)的力学性能、热性能和耐磨性能,结果表明,相比乙烯基树脂,乙烯基BMC材料具有优异的综合性能,其中硬度在60以上,提升了77%;弯曲强度达到160 MPa以上,提升了14%;老化前质量磨损在...本文对比了乙烯基树脂浇注体和乙烯基团状模塑料(乙烯基BMC)的力学性能、热性能和耐磨性能,结果表明,相比乙烯基树脂,乙烯基BMC材料具有优异的综合性能,其中硬度在60以上,提升了77%;弯曲强度达到160 MPa以上,提升了14%;老化前质量磨损在4~5 mg之间,体积磨损在2~3 mm 3之间,分别降低了约96%和97%;老化后质量磨损为8~30 mg,体积磨损在4~14 mm 3之间,分别降低了65%和80%以上。展开更多
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
文摘The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.
基金supported by the National Natural Science Foundation of China(21871173,21572140,21372151)
文摘This work describes stereoselective preparation ofβ-C-aryl/vinyl glucosides via mild Ni-catalyzed reductive arylation and vinylation of C1-glucosyl halides with aryl and vinyl halides.A broad range of aryl halides and vinyl halides were employed to yield C-aryl/vinyl glucosides in 42%–93%yields.Good to excellentβ-selectivities were obtained for C-glucosides by using tridentate ligand.
文摘This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.
基金Project supported by the National Natural Science Foundation of China(Grant No.12274356)the Fundamental Research Funds for the Central Universities(Grant No.20720220022)the 111 Project(Grant No.B16029)。
文摘Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.
文摘Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
文摘本文对比了乙烯基树脂浇注体和乙烯基团状模塑料(乙烯基BMC)的力学性能、热性能和耐磨性能,结果表明,相比乙烯基树脂,乙烯基BMC材料具有优异的综合性能,其中硬度在60以上,提升了77%;弯曲强度达到160 MPa以上,提升了14%;老化前质量磨损在4~5 mg之间,体积磨损在2~3 mm 3之间,分别降低了约96%和97%;老化后质量磨损为8~30 mg,体积磨损在4~14 mm 3之间,分别降低了65%和80%以上。