The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation ...The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.展开更多
We study the Drude weight D and optical conductivity of the two-dimensional (2D) Hubbard model at half filling with staggered magnetic flux (SMF). When SMF being introduced, the hopping integrals are modulated by ...We study the Drude weight D and optical conductivity of the two-dimensional (2D) Hubbard model at half filling with staggered magnetic flux (SMF). When SMF being introduced, the hopping integrals are modulated by the magnetic flux. The optical sum rule, which is related to the mean kinetic energy of band electrons, is evaluated for this 2D Hubbard Hamiltonian. Our present result gives the dependence of the kinetic energy, D and the optical conductivity on SMF and U. At half filling D vanishes exponentially with system size. We also find in the frequency dependence of the optical conductivity, there is δ-function peak at ω ≈ 2|m|U and the incoherent excitations begin to present themselves extended to a higher energy region.展开更多
We theoretically study the band structure and optical conductivity of twisted bilayer graphene(TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is...We theoretically study the band structure and optical conductivity of twisted bilayer graphene(TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is characterized by a series of peaks associated with the van Hove singularities in the band structure, and the peak energies evolve systematically with the twist angle. Lattice relaxation effects in TBG modify its band structure, especially the flat bands, which leads to significant shifts of the peaks in the optical conductivity. These results demonstrate that spectroscopic features in the optical conductivity can serve as fingerprints for exploring the band structure, band gap, and lattice relaxation in magic-angle TBG as well as identifying its rotation angle.展开更多
Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed ...Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed the amorphicity of the preparedfilms which become partially crystalline by annealing. Transmittance and reflectance measurements in the spectral range of200 nm to 2500 nm have been carried out at normal incidence. The analysis of the absorption coefficient data showed theexistence of indirect transition for the photon energy E in the range 1~3 eV and direct transition for E >3 eV. From thedetermination of the optical constants (n, k), the dispersion of the refractive index has anomalous behaviour in the region ofthe fundamental absorption edge, and followed by the single- effective oscillator approach.The investigated optical parameterssuch as the optical energy gap Eopt, the high frequency dielectric constant εoo, the oscillator position λo, and the oscillatorstrength So, were significantly affected by the film thickness. The characteristic energy gap obtained from the conductivitymeasurements is nearly half the value of that obtained from the optical data as in the case of thickness 400 nm. The activationenergy is 0.65 eV and the indirect optical gap is 1.32 eV.展开更多
The optical conductivity of a trilayer graphene is studied using the Kubo-Greenwood formula. We calculate the real part of the diagonal optical conductivity of an ABA-stacked trilayer graphene with different Fermi ene...The optical conductivity of a trilayer graphene is studied using the Kubo-Greenwood formula. We calculate the real part of the diagonal optical conductivity of an ABA-stacked trilayer graphene with different Fermi energies. The optical conductivity arises from interband matrix elements of the electric current operator involving the transitions from the occupied states to the unoccupied ones. We study the dependence of the real part of the diagonal optical conductivity on the photon energy, and the role of the transitions.展开更多
We measured the infrared reflectivity of BaFe1.904Ni0.096As2 single crystal from room temperature down to 20 K. Two Drude terms and a Lorentz term well describe the real part of the optical conductivity σ1 (ω). We...We measured the infrared reflectivity of BaFe1.904Ni0.096As2 single crystal from room temperature down to 20 K. Two Drude terms and a Lorentz term well describe the real part of the optical conductivity σ1 (ω). We fit the reciprocal of static optical conductivity 1/σ1(0) by the power law ρ (T)=ρo+ATn with n= 1.6. The "broad" Drude component exhibits an incoherent background with a T-independent scattering rate 1/τb, while the other "narrow" one reveals a T-quadratic scattering rate 1/τn, indicating a hidden Fermi-liquid behavior in BaFe1.904Nio.096As2 compound.展开更多
This paper explores the correlation of electro-optical properties with dielectric properties of an organic single crystal. The optical constants of the organic aminopyridine single crystal have been studied. The secon...This paper explores the correlation of electro-optical properties with dielectric properties of an organic single crystal. The optical constants of the organic aminopyridine single crystal have been studied. The second harmonic generation efficiency of the grown crystal, based on powder measurement, is 2.9 times higher than that of KDP. The real and imaginary part of the complex refractive index and dielectric constant of the crystal were determined. The optical and electrical conductivity of the grown crystal were studied.展开更多
The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. Wit...The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. With characteristic parameters pertaining toGaAs/Ga_(1-x)Al_xAs parabolic quantum wells, the numerical results are presented. It is shown that,the smaller the well width, the larger the peak intensity of the optical conductivity, and the moreasymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to theelectric field, the electric Geld enhances the optical conductivity; when the dimension of thequantum well increases, the optical conductivity increases until it reaches a maximum value, andthen decreases.展开更多
The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 an...The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.展开更多
A loop diagram approach to the nonlinear optical conductivity of an electron-phonon system is introduced. This approach can be categorized as another Feynman-like scheme because all contributions to the self-energy te...A loop diagram approach to the nonlinear optical conductivity of an electron-phonon system is introduced. This approach can be categorized as another Feynman-like scheme because all contributions to the self-energy terms can be grouped into topologically-distinct loop diagrams. The results for up to the first order nonlinear conductivity are identical to those derived using the KC reduction identity (KCRI) and the state- dependent projection operator (SDPO) introduced by the present authors. The result satisfies the “population criterion” in that the population of electrons and phonons appear independently or the Fermi distributions are multiplied by the Planck distributions in the formalism. Therefore it is possible, in an organized manner, to present the phonon emissions and absorptions as well as photon absorptions in all electron transition processes. In additions, the calculation needed to obtain the line shape function appearing in the energy denominator of the conductivity can be reduced using this diagram method. This method shall be called the “KC loop diagram method”, since it originates from proper application of KCRI’s and SDPO’s.展开更多
Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimenta...Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimental results, it is shown that the single-gap isotropic model is insufficient to understand consistently optical behaviors. Also, it is concluded that the two-band model consistently describes the optical behaviors. In the two-gap model, we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.展开更多
Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the opt...Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated展开更多
Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field ...Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.展开更多
The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U...The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.展开更多
For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical pr...TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.展开更多
Electrical conductivity of molten slag is an important physicochemical property for designing the refming process in electric smelting furnaces. Though conductivities of many slag systems have been measured, the quant...Electrical conductivity of molten slag is an important physicochemical property for designing the refming process in electric smelting furnaces. Though conductivities of many slag systems have been measured, the quantitative relationships of conductivity with slag composition and temperature are still very limited. In this article, the Arrhenius law was used to describe the experimental data of conductivities for CaO-MgO-Al2O3-SiO2, CaO-Al2O3-SiO2, CaO-MnO-AlEO3-SiO2, as well as CaO-MgO-MnO- Al2O3-SiO: systems, and it is found that activation energy can be expressed as a linear function of the content of components, where the optical basicity of slag must be within the range of 0.58 to 0.68.展开更多
Ultrasonic velocity measurement, a non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the physical properties of rock materials. This paper p...Ultrasonic velocity measurement, a non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the physical properties of rock materials. This paper presents an experimental study of the measurement of P-wave velocity, thermal conductivity and porosity of several types of sedimentary, metamorphic, and magmatic rocks. The aim of this study is to predict the rocks properties including their thermal conductivity and porosity using P-wave velocity. For this purpose, the physical properties are determined in the laboratory to obtain correlations between P-wave velocity and physical properties. Consequently, good linear relationships are found between all the determined physical properties and the P-wave velocity measurements.展开更多
We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characteri...We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, ultraviolet-visible spectra (Uv-Vis) (absorbance/reflectance) and electrical conductivity. Our results are revealing a remarkable effect on the morphology and structure of vanadium oxide nanoparticles. Hence, the graphene layers improved their electrical conductivity and highly influenced their optical properties. Therefore, the obtained results may lead to better performance for a large field of applications.展开更多
We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefo...We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefore, it is expected that the energy scale of the hybridization gap should increase with increasing Lu concentration based on the periodic Anderson model. On the contrary, we find that the spectral structure associated with the hybridization effect shifts monotonically to lower energy. Furthermore, the Lu substitution results in a substantial increase of the free carrier spectral weight and less pronounced plasma frequency reduction upon lowering temperature. We attribute the effect to the disruption of the Kondo lattice periodicity by the random substitution of Yb by Lu. The work highlights the importance of the lattice periodicity of the rare earth element for understanding the Kondo lattice phenomena.展开更多
基金Project supported by the Ministry of Sciences and Technology of China (2006CB601104)
文摘The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.
基金National Natural Science Foundation of China under Grant No.10247010the Foundation for Key Program of Ministry of Education of China under Grant No.205181
文摘We study the Drude weight D and optical conductivity of the two-dimensional (2D) Hubbard model at half filling with staggered magnetic flux (SMF). When SMF being introduced, the hopping integrals are modulated by the magnetic flux. The optical sum rule, which is related to the mean kinetic energy of band electrons, is evaluated for this 2D Hubbard Hamiltonian. Our present result gives the dependence of the kinetic energy, D and the optical conductivity on SMF and U. At half filling D vanishes exponentially with system size. We also find in the frequency dependence of the optical conductivity, there is δ-function peak at ω ≈ 2|m|U and the incoherent excitations begin to present themselves extended to a higher energy region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874271 and 11874272)。
文摘We theoretically study the band structure and optical conductivity of twisted bilayer graphene(TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is characterized by a series of peaks associated with the van Hove singularities in the band structure, and the peak energies evolve systematically with the twist angle. Lattice relaxation effects in TBG modify its band structure, especially the flat bands, which leads to significant shifts of the peaks in the optical conductivity. These results demonstrate that spectroscopic features in the optical conductivity can serve as fingerprints for exploring the band structure, band gap, and lattice relaxation in magic-angle TBG as well as identifying its rotation angle.
文摘Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed the amorphicity of the preparedfilms which become partially crystalline by annealing. Transmittance and reflectance measurements in the spectral range of200 nm to 2500 nm have been carried out at normal incidence. The analysis of the absorption coefficient data showed theexistence of indirect transition for the photon energy E in the range 1~3 eV and direct transition for E >3 eV. From thedetermination of the optical constants (n, k), the dispersion of the refractive index has anomalous behaviour in the region ofthe fundamental absorption edge, and followed by the single- effective oscillator approach.The investigated optical parameterssuch as the optical energy gap Eopt, the high frequency dielectric constant εoo, the oscillator position λo, and the oscillatorstrength So, were significantly affected by the film thickness. The characteristic energy gap obtained from the conductivitymeasurements is nearly half the value of that obtained from the optical data as in the case of thickness 400 nm. The activationenergy is 0.65 eV and the indirect optical gap is 1.32 eV.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10934010)the National Basic Research Program of China (GrantNos. 2011CB921502 and 2012CB821305)
文摘The optical conductivity of a trilayer graphene is studied using the Kubo-Greenwood formula. We calculate the real part of the diagonal optical conductivity of an ABA-stacked trilayer graphene with different Fermi energies. The optical conductivity arises from interband matrix elements of the electric current operator involving the transitions from the occupied states to the unoccupied ones. We study the dependence of the real part of the diagonal optical conductivity on the photon energy, and the role of the transitions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374345,11104335,and 91121004)the National Basic Research Program of China(Grant Nos.2012CB821403,2011CBA00107,and 2012CB921302)
文摘We measured the infrared reflectivity of BaFe1.904Ni0.096As2 single crystal from room temperature down to 20 K. Two Drude terms and a Lorentz term well describe the real part of the optical conductivity σ1 (ω). We fit the reciprocal of static optical conductivity 1/σ1(0) by the power law ρ (T)=ρo+ATn with n= 1.6. The "broad" Drude component exhibits an incoherent background with a T-independent scattering rate 1/τb, while the other "narrow" one reveals a T-quadratic scattering rate 1/τn, indicating a hidden Fermi-liquid behavior in BaFe1.904Nio.096As2 compound.
文摘This paper explores the correlation of electro-optical properties with dielectric properties of an organic single crystal. The optical constants of the organic aminopyridine single crystal have been studied. The second harmonic generation efficiency of the grown crystal, based on powder measurement, is 2.9 times higher than that of KDP. The real and imaginary part of the complex refractive index and dielectric constant of the crystal were determined. The optical and electrical conductivity of the grown crystal were studied.
文摘The optical conductivity of impurity-doped parabolic quantum wells in anapplied electric field is investigated with the memory-function approach, and the analyticexpression for the optical conductivity is derived. With characteristic parameters pertaining toGaAs/Ga_(1-x)Al_xAs parabolic quantum wells, the numerical results are presented. It is shown that,the smaller the well width, the larger the peak intensity of the optical conductivity, and the moreasymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to theelectric field, the electric Geld enhances the optical conductivity; when the dimension of thequantum well increases, the optical conductivity increases until it reaches a maximum value, andthen decreases.
文摘The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.
文摘A loop diagram approach to the nonlinear optical conductivity of an electron-phonon system is introduced. This approach can be categorized as another Feynman-like scheme because all contributions to the self-energy terms can be grouped into topologically-distinct loop diagrams. The results for up to the first order nonlinear conductivity are identical to those derived using the KC reduction identity (KCRI) and the state- dependent projection operator (SDPO) introduced by the present authors. The result satisfies the “population criterion” in that the population of electrons and phonons appear independently or the Fermi distributions are multiplied by the Planck distributions in the formalism. Therefore it is possible, in an organized manner, to present the phonon emissions and absorptions as well as photon absorptions in all electron transition processes. In additions, the calculation needed to obtain the line shape function appearing in the energy denominator of the conductivity can be reduced using this diagram method. This method shall be called the “KC loop diagram method”, since it originates from proper application of KCRI’s and SDPO’s.
文摘Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimental results, it is shown that the single-gap isotropic model is insufficient to understand consistently optical behaviors. Also, it is concluded that the two-band model consistently describes the optical behaviors. In the two-gap model, we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.
文摘Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347127,61404044,and 11347111)
文摘Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.
文摘The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
文摘TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.
基金supported by the National Natural Science Foundation of China (No.50774004)
文摘Electrical conductivity of molten slag is an important physicochemical property for designing the refming process in electric smelting furnaces. Though conductivities of many slag systems have been measured, the quantitative relationships of conductivity with slag composition and temperature are still very limited. In this article, the Arrhenius law was used to describe the experimental data of conductivities for CaO-MgO-Al2O3-SiO2, CaO-Al2O3-SiO2, CaO-MnO-AlEO3-SiO2, as well as CaO-MgO-MnO- Al2O3-SiO: systems, and it is found that activation energy can be expressed as a linear function of the content of components, where the optical basicity of slag must be within the range of 0.58 to 0.68.
文摘Ultrasonic velocity measurement, a non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the physical properties of rock materials. This paper presents an experimental study of the measurement of P-wave velocity, thermal conductivity and porosity of several types of sedimentary, metamorphic, and magmatic rocks. The aim of this study is to predict the rocks properties including their thermal conductivity and porosity using P-wave velocity. For this purpose, the physical properties are determined in the laboratory to obtain correlations between P-wave velocity and physical properties. Consequently, good linear relationships are found between all the determined physical properties and the P-wave velocity measurements.
文摘We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, ultraviolet-visible spectra (Uv-Vis) (absorbance/reflectance) and electrical conductivity. Our results are revealing a remarkable effect on the morphology and structure of vanadium oxide nanoparticles. Hence, the graphene layers improved their electrical conductivity and highly influenced their optical properties. Therefore, the obtained results may lead to better performance for a large field of applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11327806 and GZ1123)the National Key Research and Development Program of China(Grant Nos.2016YFA0300902 and 2017YFA0302904)
文摘We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefore, it is expected that the energy scale of the hybridization gap should increase with increasing Lu concentration based on the periodic Anderson model. On the contrary, we find that the spectral structure associated with the hybridization effect shifts monotonically to lower energy. Furthermore, the Lu substitution results in a substantial increase of the free carrier spectral weight and less pronounced plasma frequency reduction upon lowering temperature. We attribute the effect to the disruption of the Kondo lattice periodicity by the random substitution of Yb by Lu. The work highlights the importance of the lattice periodicity of the rare earth element for understanding the Kondo lattice phenomena.