The author reports a very rare case of sporadic primary multiple extragastrointestinal stromal tumors (EGISTs) of the omentum associated with different mutations of the exon 11 of the c-kit gene in a 75-year-old man w...The author reports a very rare case of sporadic primary multiple extragastrointestinal stromal tumors (EGISTs) of the omentum associated with different mutations of the exon 11 of the c-kit gene in a 75-year-old man with gastric cancer. During an operation for the cancer, two solid tumors (10 mm and 8 mm) were found in the omentum. Both tumors consisted of cellular spindle cells. Mitotic figures were two and three per 50 high power fields. The tumor cells were positive for KIT, CD34 and vimentin, but negative for desmin, S100 protein, α-smooth muscle actin and p53 protein. Ki67 labeling was 2% and 3%. The larger EGIST showed a deletion of codons 552-558 of exon 11 of the c-kit gene, while the smaller EGIST had a point mutation at codon 559 (GTT←GAT) in exon 11 of the c-kit gene. Exons 9, 13, and 17 of the c-kit gene, and exons 12 and 18 of the platelet derived growth factor receptor α genes showed no mutations. The case shows that sporadic multiple EGISTs can occur in the omentum.展开更多
AIM: To investigate the expression and mutation of c-kit gene and its correlation with the clinical pathology and prognosis of gastrointestinal stromal tumors (GISTs).METHODS: A total of 94 cases of GISTs, 10 leiomyom...AIM: To investigate the expression and mutation of c-kit gene and its correlation with the clinical pathology and prognosis of gastrointestinal stromal tumors (GISTs).METHODS: A total of 94 cases of GISTs, 10 leiomyomas and 2 schwannomas were studied for the expression of KIT by immunohistochemistry. The c-kit gene mutations in exon 11 of these specimens were detected by PCR-SSCP technique.RESULTS: Of the 94 cases of GISTs, 91 (96.8 %) expressed the KIT protein. Leiomyomas and schwannomas were negative for KIT. The c-kit gene mutations of exon 11 were found in 38 out of the 94 cases of GISTs (40.4 %). The mutations involved point mutations (Va1560-Asp, Ile563-Met),del 557-559 and 579ins12. No mutations were detectable in benign GISTs, leiomyomas or schwannomas. The patients with mutation-positive GISTs showed more frequent recurrences, invasion and metastasis in adjacent tissues than those with mutation-negative ones.CONCLUSION: KIT is a useful marker for diagnosis of GISTs.Mutation of the c-kit gene may play a significant role in the pathogenesis of GISTs and may be associated with poor prognosis in patients with GISTs.展开更多
AIM: To transfect mutant C-kit cDNA at codon 579 into human embryonic kidney cell line to observe its role in the pathogenesis of gastrointestinal stromal tumor (GIST). METHODS: Eukaryotic expression vectors of pc...AIM: To transfect mutant C-kit cDNA at codon 579 into human embryonic kidney cell line to observe its role in the pathogenesis of gastrointestinal stromal tumor (GIST). METHODS: Eukaryotic expression vectors of pcDNA3- Kit-NW and pcDNA3-Kit-W were constructed. Then pcDNA3-Kit-NW and pcDNA3-Kit-W plasrnids were transfected into human embryonic kidney cell line by Upofectamine. The resistant clone was screened by G418 filtration and identified by sequencing, Western blotting, and immunocytochemical staining. Human embryonic kidney cells were divided into three groups including pcDNA3-Kit-NW, pcDNA3-Kit-W, and vector control groups. Absorbency value with a wavelength of 574 nm was detected by MTT analysis. Mice were injected with three groups of cells. Volume, mass, and histological examinations of the tumors in different groups were measured and compared. RESULTS: The C-kit gene and mutant C-kit gene were successfully cloned into the eukaryotic expression vector pcDNA3, pcDNA3-Kit-NW and pcDNA3-Kit-W were successfully transfected into human embryonic kidney cell line and showed stable expression in this cell line. Cell proliferating activity had significant differences between pcDNA3-Kit-NW and pcDNA3, pcDNA3-Kit- NW and pcDNA3-Kit-W (P〈0.05), respectively. Tumors were only observed in nude mice implanted with cells transfected with pcDNA3-Kit-NW. CONCLUSION: Mutation of C-kit gene increases the proliferation activity of human cells and plays an important role in the malignant transformation of GIST.展开更多
AIM: TO investigate the significance of c-kit gene mutation in gastrointestinal stromal tumors (GIST).METHODS: Fifty two cases of GIST and 28 cases of other tumors were examined. DNA samples were extracted from paraff...AIM: TO investigate the significance of c-kit gene mutation in gastrointestinal stromal tumors (GIST).METHODS: Fifty two cases of GIST and 28 cases of other tumors were examined. DNA samples were extracted from paraffin sections and fresh blocks. Exons 11, 9 and 13 of the c-kit gene were amplified by PCR and sequenced.RESULTS: Mutations of exon 11 were found in 14 of 25 malignant GISTs (56%), mutations of exon 11 of the c-kit gene were revealed in 2 of 19 borderline GISTs (10.5%),and no mutation was found in benign tumors. The mutation rate showed significant difference (x^2=14.39, P<0.01) between malignant and benign GISTs. Most of mutations consisted of the in-frame deletion or replication from 3 to 48 bp in heterozygous and homozygous fashions, None of the mutations disrupted the downstream reading frame of the gene. Point mutations and frame deletions were most frequently observed at codons 550-560, but duplications were most concentrated at codons 570-585. No mutations of exons 9 and 13 were revealed in GISTs, Neither c-kit gene expression nor gene mutations were found in 3 leiomyomas, 8 leiomyosarcomas, 2 schwannomas, 2 malignant peripheral nerve sheath tumors, 2 intra-abdominal fibromatoses, 2 malignant fibrous histiocytomas and 9 adenocarcinomas.CONCLUSION: C-kit gene mutations occur preferentially in malignant GISTs and might be a clinically useful adjunct marker in the evaluation of GISTs and can help to differentiate GISTs from other mesenchymal tumors of gastrointestinal tract, such as smooth muscle tumors,schwannomas, etc.展开更多
We described two members in a family with gastrointestinal stromal tumors (GISTs) without cutaneous hyperpigmentation. The patients were father and son who did not have cutaneous hyperpigmentation. Histological exam...We described two members in a family with gastrointestinal stromal tumors (GISTs) without cutaneous hyperpigmentation. The patients were father and son who did not have cutaneous hyperpigmentation. Histological examination showed that these tumors were GISTs expressing CD34 and CD117. Tumor DNA extracted from paraffin-embedded specimens revealed somatic mutation with a deletion mutation at different codons in exon 11 of c-kit gene after direct sequencing analysis. No germline mutation was detected in DNA extracted from peripheral leukocytes obtained from the father and son. We propose that GISTs could be caused by sporadic somatic mutation in a family without germline mutation and hyperpigmentation.展开更多
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p...BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.展开更多
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi...Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.展开更多
A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to ...A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,...Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,and neurological disorders.Recent investigations have focused on the correlation of genetic factors such asβ-cell function and insulin secretary genes(transcription factor 7 like 2,potassium voltage-gated channel subfamily q member 1,adipo-nectin etc.)on maternal metabolism during gestation leading to GDM.Epigenetic alterations like DNA methylation,histone modification,and miRNA expression can influence gene expression and play a dominant role in feto-maternal meta-bolic pathways.Interactions between genes and environment,resulting in differ-ential gene expression patterns may lead to GDM.Researchers suggested that GDM women are more susceptible to insulin resistance,which alters intrauterine surroundings,resulting hyperglycemia and hyperinsulinemia.Epigenetic modi-fications in genes affecting neuroendocrine activities,and metabolism,increase the risk of obesity and type 2 diabetes in offspring.There is currently no treatment or effective preventive method for GDM,since the molecular processes of insulin resistance are not well understood.The present review was undertaken to un-derstand the pathophysiology of GDM and its effects on adverse neonatal out-comes.In addition,the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
The aim of this study was to elucidate the expression and regulation of the c.kit protein in spermatogenesis of locusts. Immunohistochemistry and biological statistics were used to investigate the expression of the c-...The aim of this study was to elucidate the expression and regulation of the c.kit protein in spermatogenesis of locusts. Immunohistochemistry and biological statistics were used to investigate the expression of the c-kit protein in four representative phases of spermatogenesis of three dominant species of locusts of Arcypteridae (Orthoptera: Acridoidea), namely, Omocestus viridulus (Linnaeus), Euchorthippus unicolor (Ikonn.), and Euchorthippus vittatus Zheng, and so on, in Siping area of Jilin Province, China. The results revealed the following: (1) There was weak positive expression of the c-kit protein in spermatogonia and the positive granules were thinner; (2) there was a strong positive expression of the c-kit protein in primary spermatocyte and the positive granules became the largest than in all developmental stages; (3) the c-kit protein positive expression became stronger in secondary spermatocyte, while the positive granules became thinner; (4) there was strong positive expression of the c-kit protein and the positive granules were thinner in mature sperm, which were distributed on its head and tail; (5) there were strong positive protein granules massing at the end of spermary; (6) the positive intensity of the c-kit protein in spermatogenesis was significantly different among different species of locusts. The data suggested that the c-kit protein may play a crucial role in spermatogenesis as well as maintain the physiological action of sperms and fertilization, regulate the developmental speed of spermatogenesis, and/or maintain species isolation, etc.展开更多
文摘The author reports a very rare case of sporadic primary multiple extragastrointestinal stromal tumors (EGISTs) of the omentum associated with different mutations of the exon 11 of the c-kit gene in a 75-year-old man with gastric cancer. During an operation for the cancer, two solid tumors (10 mm and 8 mm) were found in the omentum. Both tumors consisted of cellular spindle cells. Mitotic figures were two and three per 50 high power fields. The tumor cells were positive for KIT, CD34 and vimentin, but negative for desmin, S100 protein, α-smooth muscle actin and p53 protein. Ki67 labeling was 2% and 3%. The larger EGIST showed a deletion of codons 552-558 of exon 11 of the c-kit gene, while the smaller EGIST had a point mutation at codon 559 (GTT←GAT) in exon 11 of the c-kit gene. Exons 9, 13, and 17 of the c-kit gene, and exons 12 and 18 of the platelet derived growth factor receptor α genes showed no mutations. The case shows that sporadic multiple EGISTs can occur in the omentum.
基金the National Natural Science Foundation of China,No.30070743
文摘AIM: To investigate the expression and mutation of c-kit gene and its correlation with the clinical pathology and prognosis of gastrointestinal stromal tumors (GISTs).METHODS: A total of 94 cases of GISTs, 10 leiomyomas and 2 schwannomas were studied for the expression of KIT by immunohistochemistry. The c-kit gene mutations in exon 11 of these specimens were detected by PCR-SSCP technique.RESULTS: Of the 94 cases of GISTs, 91 (96.8 %) expressed the KIT protein. Leiomyomas and schwannomas were negative for KIT. The c-kit gene mutations of exon 11 were found in 38 out of the 94 cases of GISTs (40.4 %). The mutations involved point mutations (Va1560-Asp, Ile563-Met),del 557-559 and 579ins12. No mutations were detectable in benign GISTs, leiomyomas or schwannomas. The patients with mutation-positive GISTs showed more frequent recurrences, invasion and metastasis in adjacent tissues than those with mutation-negative ones.CONCLUSION: KIT is a useful marker for diagnosis of GISTs.Mutation of the c-kit gene may play a significant role in the pathogenesis of GISTs and may be associated with poor prognosis in patients with GISTs.
基金Supported by the National Natural Science Foundation of China No. 30070743 and No. 30471702
文摘AIM: To transfect mutant C-kit cDNA at codon 579 into human embryonic kidney cell line to observe its role in the pathogenesis of gastrointestinal stromal tumor (GIST). METHODS: Eukaryotic expression vectors of pcDNA3- Kit-NW and pcDNA3-Kit-W were constructed. Then pcDNA3-Kit-NW and pcDNA3-Kit-W plasrnids were transfected into human embryonic kidney cell line by Upofectamine. The resistant clone was screened by G418 filtration and identified by sequencing, Western blotting, and immunocytochemical staining. Human embryonic kidney cells were divided into three groups including pcDNA3-Kit-NW, pcDNA3-Kit-W, and vector control groups. Absorbency value with a wavelength of 574 nm was detected by MTT analysis. Mice were injected with three groups of cells. Volume, mass, and histological examinations of the tumors in different groups were measured and compared. RESULTS: The C-kit gene and mutant C-kit gene were successfully cloned into the eukaryotic expression vector pcDNA3, pcDNA3-Kit-NW and pcDNA3-Kit-W were successfully transfected into human embryonic kidney cell line and showed stable expression in this cell line. Cell proliferating activity had significant differences between pcDNA3-Kit-NW and pcDNA3, pcDNA3-Kit- NW and pcDNA3-Kit-W (P〈0.05), respectively. Tumors were only observed in nude mice implanted with cells transfected with pcDNA3-Kit-NW. CONCLUSION: Mutation of C-kit gene increases the proliferation activity of human cells and plays an important role in the malignant transformation of GIST.
基金Supported by the National Natural Science Foundation of China,No.30300152
文摘AIM: TO investigate the significance of c-kit gene mutation in gastrointestinal stromal tumors (GIST).METHODS: Fifty two cases of GIST and 28 cases of other tumors were examined. DNA samples were extracted from paraffin sections and fresh blocks. Exons 11, 9 and 13 of the c-kit gene were amplified by PCR and sequenced.RESULTS: Mutations of exon 11 were found in 14 of 25 malignant GISTs (56%), mutations of exon 11 of the c-kit gene were revealed in 2 of 19 borderline GISTs (10.5%),and no mutation was found in benign tumors. The mutation rate showed significant difference (x^2=14.39, P<0.01) between malignant and benign GISTs. Most of mutations consisted of the in-frame deletion or replication from 3 to 48 bp in heterozygous and homozygous fashions, None of the mutations disrupted the downstream reading frame of the gene. Point mutations and frame deletions were most frequently observed at codons 550-560, but duplications were most concentrated at codons 570-585. No mutations of exons 9 and 13 were revealed in GISTs, Neither c-kit gene expression nor gene mutations were found in 3 leiomyomas, 8 leiomyosarcomas, 2 schwannomas, 2 malignant peripheral nerve sheath tumors, 2 intra-abdominal fibromatoses, 2 malignant fibrous histiocytomas and 9 adenocarcinomas.CONCLUSION: C-kit gene mutations occur preferentially in malignant GISTs and might be a clinically useful adjunct marker in the evaluation of GISTs and can help to differentiate GISTs from other mesenchymal tumors of gastrointestinal tract, such as smooth muscle tumors,schwannomas, etc.
文摘We described two members in a family with gastrointestinal stromal tumors (GISTs) without cutaneous hyperpigmentation. The patients were father and son who did not have cutaneous hyperpigmentation. Histological examination showed that these tumors were GISTs expressing CD34 and CD117. Tumor DNA extracted from paraffin-embedded specimens revealed somatic mutation with a deletion mutation at different codons in exon 11 of c-kit gene after direct sequencing analysis. No germline mutation was detected in DNA extracted from peripheral leukocytes obtained from the father and son. We propose that GISTs could be caused by sporadic somatic mutation in a family without germline mutation and hyperpigmentation.
文摘BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
基金supported by Hunan Provincial Key Research and Development Program,No.2021SK2002(to BW)the Natural Science Foundation of Hunan Province of China(General Program),No.2021JJ30938(to YL)。
文摘Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金Supported by Romanian Ministry of Research,Innovation and Digitization,No.PN23.16.02.04 and No.31PFE/30.12.2021.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
基金supported by the National Research Foundation of Korea(RS-2023-00245298)the Korea Healthcare Technology R&D(HI21C1795)grants,funded by the Korean government(to SRK).
文摘A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金Supported by Maulana Azad National Fellowship,University Grants Commission,New Delhi,and Department of Biotechnology,New Delhi,No.AS[82-27/2019(SA III)]DBT-BUILDER-University of Lucknow Interdisciplinary Life Science Programme for Advance Research and Education(Level II),No.TG(BT/INF/22/SP47623/2022).
文摘Gestational diabetes mellitus(GDM)is a metabolic disorder,recognised during 24-28 weeks of pregnancy.GDM is linked with adverse newborn outcomes such as macrosomia,premature delivery,metabolic disorder,cardiovascular,and neurological disorders.Recent investigations have focused on the correlation of genetic factors such asβ-cell function and insulin secretary genes(transcription factor 7 like 2,potassium voltage-gated channel subfamily q member 1,adipo-nectin etc.)on maternal metabolism during gestation leading to GDM.Epigenetic alterations like DNA methylation,histone modification,and miRNA expression can influence gene expression and play a dominant role in feto-maternal meta-bolic pathways.Interactions between genes and environment,resulting in differ-ential gene expression patterns may lead to GDM.Researchers suggested that GDM women are more susceptible to insulin resistance,which alters intrauterine surroundings,resulting hyperglycemia and hyperinsulinemia.Epigenetic modi-fications in genes affecting neuroendocrine activities,and metabolism,increase the risk of obesity and type 2 diabetes in offspring.There is currently no treatment or effective preventive method for GDM,since the molecular processes of insulin resistance are not well understood.The present review was undertaken to un-derstand the pathophysiology of GDM and its effects on adverse neonatal out-comes.In addition,the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金the Natural Science Foundation of Shaanxi Province, China (2004C115).
文摘The aim of this study was to elucidate the expression and regulation of the c.kit protein in spermatogenesis of locusts. Immunohistochemistry and biological statistics were used to investigate the expression of the c-kit protein in four representative phases of spermatogenesis of three dominant species of locusts of Arcypteridae (Orthoptera: Acridoidea), namely, Omocestus viridulus (Linnaeus), Euchorthippus unicolor (Ikonn.), and Euchorthippus vittatus Zheng, and so on, in Siping area of Jilin Province, China. The results revealed the following: (1) There was weak positive expression of the c-kit protein in spermatogonia and the positive granules were thinner; (2) there was a strong positive expression of the c-kit protein in primary spermatocyte and the positive granules became the largest than in all developmental stages; (3) the c-kit protein positive expression became stronger in secondary spermatocyte, while the positive granules became thinner; (4) there was strong positive expression of the c-kit protein and the positive granules were thinner in mature sperm, which were distributed on its head and tail; (5) there were strong positive protein granules massing at the end of spermary; (6) the positive intensity of the c-kit protein in spermatogenesis was significantly different among different species of locusts. The data suggested that the c-kit protein may play a crucial role in spermatogenesis as well as maintain the physiological action of sperms and fertilization, regulate the developmental speed of spermatogenesis, and/or maintain species isolation, etc.