目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu...目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。展开更多
提出一种改进失效模式与影响分析(Failure Mode and Effect Analysis,FMEA)模型用于智能制造系统可靠性风险评估。首先基于文献法、专家访谈和鱼骨图分析法,从人、机、料、法、环(Human-Machine-Material-Method-Environment,4M1E)五个...提出一种改进失效模式与影响分析(Failure Mode and Effect Analysis,FMEA)模型用于智能制造系统可靠性风险评估。首先基于文献法、专家访谈和鱼骨图分析法,从人、机、料、法、环(Human-Machine-Material-Method-Environment,4M1E)五个方面识别智能制造运行过程中的潜在失效模式;其次使用三角模糊数获取专家对失效模式的风险评估信息,风险因子权重由结构熵权法计算确定;最后运用模糊C均值(Fuzzy C-Means,FCM)算法划分失效模式的风险等级。此外,为了检验结果的有效性和可靠性,采用对比分析和蒙特卡洛仿真进行验证。展开更多
文摘目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。