期刊文献+
共找到35,383篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution and Application of Sealing Ability of Gypsum Caprocks under Temperature-Pressure Coupling:An Example of the ZS5 Well in the Tazhong Area of the Tarim Basin
1
作者 LIU Hua ZHAO Shan +3 位作者 YANG Xianzhang ZHU Yongfeng WANG Shen ZHANG Ke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期168-184,共17页
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid... Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved. 展开更多
关键词 temperature-pressure coupling gypsum caprocks brittle-plastic evolution sealing capacity Tarim Basin
下载PDF
Fracture sealing performance of granular lost circulation materials at elevated temperature:A theoretical and coupled CFD-DEM simulation study
2
作者 Chong Lin Qi-Cong Xu +4 位作者 Lie-Xiang Han Gao Li Hai He Hong-Ling Zhou Ji-Ping She 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期567-581,共15页
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio... Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones. 展开更多
关键词 Geothermal well drilling HTHP formationLost circulation material CFD-DEM Fracture sealing
下载PDF
Study on Sealing Characteristics of Sliding Seal Assembly of Aircraft Hydraulic Actuator
3
作者 Weinan Li Saixin Shi +4 位作者 Hongxia Tang Liang Chen Jiawei Zhang Hao Tang Jianhua Zhao 《Instrumentation》 2024年第1期18-29,共12页
The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect i... The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance. 展开更多
关键词 hydraulic actuator contact stress sealing characteristics maximum shear stress
下载PDF
Application of Choquet Integral-Importance-Performance Analysis and TOPSIS Methods in Approaching the Preference Factors of Calligraphy and Seal Engraving Imagery
4
作者 Yu Hsuan Chang Jiann Sheng Jiang Min Min Lin 《Journal of Contemporary Educational Research》 2024年第5期276-288,共13页
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call... Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design. 展开更多
关键词 Evaluation Grid Method Analytic Hierarchy Process CALLIGRAPHY seal engraving Importance-Performance Analysis Choquet integral TOPSIS
下载PDF
Study on the effect of thermal deformation on the liquid seal of high-temperature molten salt pump in molten salt reactor 被引量:1
5
作者 Xing‑Chao Shen Yuan Fu Jian‑Yu Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期128-138,共11页
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p... The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation. 展开更多
关键词 High-temperature molten salt pump seal thermal deformation Leakage characteristics seal dynamic characteristics Critical speed
下载PDF
On the installation of an in situ large-scale vertical SEALing (VSEAL) experiment on bentonite pellet-powder mixture
6
作者 Nadia Mokni Justo Cabrera Frédéric Deleruyelle 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2388-2401,共14页
Recently,the Institute for Radiological protection and Nuclear Safety(IRSN)has launched VSEAL(Vertical SEALing)project to investigate the impact of gas migration on the long-term performance of bentonite based vertica... Recently,the Institute for Radiological protection and Nuclear Safety(IRSN)has launched VSEAL(Vertical SEALing)project to investigate the impact of gas migration on the long-term performance of bentonite based vertical sealing systems(VSS).The first VSEAL in situ test was emplaced in IRSN’s Underground Research Laboratory(URL)in Tournemire(France)in 2019 and was equipped with 76 wired and wireless sensors.The test is still in progress,but the collected set of data provides already valuable information of the hydro-mechanical behavior of VSS during hydration.The swelling core consists of a mixture of highdensity pellets and powder of MX80 bentonite in a ratio of 80/20(in dry mass).An innovative method was adopted to drill a 1-m diameter and w10-m deep shaft in order to minimize the rock perturbation at the sidewalls.Because a specific protocol was adopted to install the bentonite mixture together with a careful characterization of the core during construction,VSEAL 1 constitutes the unique in situ sealing test with a well-known initial structural distribution of the pellets and the powder.Some heterogeneities occurred within the experiment during the installation process:a damaged zone developed around the shaft walls due to the interruption of the installation operations caused by COVID19 lockdown in France;a technological gap with a variable thickness between the last pellets layer and the top confining lid and a heterogeneous distribution of the bentonite powder at some layers inducing large inter pellets voids close to the bentonite-rock interface.Artificially injected water volume,relative humidity,water content and swelling pressure in both radial and axial directions were monitored.Comparison of the results showed that the presence of installation-induced heterogeneities led to the generation of preferential flow paths that influenced the swelling pressure evolution at radial and axial directions. 展开更多
关键词 Bentonite pellet-powder mixture HETEROGENEITIES Technological gap seals In situ test
下载PDF
Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy
7
作者 Chen Ma Dong Wang +3 位作者 Jinyu Liu Ning Peng Wei Shang Yuqing Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期959-969,共11页
Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys However,its application is limited due to its defects.This work reports a novel preparation of i... Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys However,its application is limited due to its defects.This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition.The morphology and structure were characterized by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS),and X-ray diffractometer (XRD).Image-Pro Plus 6.0 was used to determine the porosity of the coating,which was decreased from 8.53%to 0.51%.Simultaneously,the coating thickness was increased by a factor of four.The anti-corrosion performance of each sample was evaluated using electrochemical tests,and the findings revealed that the corrosion current density of coatings (i_(corr)) of the samples were lowered from 9.152×10^(-2) to 6.152×10^(-4) mA·cm^(-2),and the total resistance (R_(T)) of the samples were enhanced from 2.19×10^(4) to 2.33×10^(5)Ω·cm^(2).The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h.In addition,the mechanism of PEO self-sealing behavior was described in this article. 展开更多
关键词 magnesium alloy in-situ sealing plasma electrolytic oxidation corrosion resistance
下载PDF
MRI insight on multiphase flow in hydrate-bearing sediment and development mechanism of hydrate seal
8
作者 Guo-Jun Zhao Ming-Jun Yang +2 位作者 Xin Lv Jia-Nan Zheng Yong-Chen Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3854-3864,共11页
Gas and water migration through the hydrate-bearing sediment are characteristic features in marine gas hydrate reservoirs worldwide.However,there are few experimental investigations on the effect of water-gas flow on ... Gas and water migration through the hydrate-bearing sediment are characteristic features in marine gas hydrate reservoirs worldwide.However,there are few experimental investigations on the effect of water-gas flow on the gas hydrate reservoir.In this study,gas-water migration in gas hydrate stability zone(GHSZ)was investigated visually employing a high-resolution magnetic resonance imaging(MRI)apparatus,and the formation of hydrate seal was experimentally investigated.Results revealed that normal flow of gas-water at the low flow rate of 1–0.25 mL/min will induce the hydrate reformation.Conversely,higher gas-water flow rates(at 2–0.5 and 4–1 mL/min)need higher reservoir pressure to induce the hydrate reformation.In addition,the hydrate reformation during the gas-water flow process produced the hydrate seal,which can withstand an over 9.0 MPa overpressure.This high overpressure provides the development condition for the underlying gas and/or water reservoir.A composite MRI image of the whole hydrate seal was obtained through the MRI.The pore difference between hydrate zone and coexistence zone produces a capillary sealing effect for hydrate seal.The hydrate saturation of hydrate seal was more than 51.6%,and the water saturation was more than 19.3%.However,the hydrate seal can be broken through when the overpressure exceeded the capillary pressure of the hydrate seal,which induced the sudden drop of reservoir pressure.This study provides a scientific explanation for the existence of high-pressure underlying gas below the hydrate layer and is significant for the safe exploitation of these common typical marine hydrate reservoirs. 展开更多
关键词 Gas hydrate Gas-water migration Underlying gas Hydrate seal Pore difference MRI
下载PDF
Propagation and sealing efficiency of chemical grouting in a two-dimensional fracture network with flowing water
9
作者 Guosheng Zheng Wanghua Sui +2 位作者 Gailing Zhang Jiaxing Chen Dingyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期903-917,共15页
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact... In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design. 展开更多
关键词 Fracture network GROUTING PROPAGATION sealing efficiency Physical modeling Deflection effect of grouting
下载PDF
Geopolymer-based modification of blasting sealing materials and optimization of blasting block size in coal seams of open pit mines
10
作者 Xiaohua Ding Zhongchen Ao +5 位作者 Wei Zhou Hao Qin Zhongao Yang Wen An Xiaoshuang Li Honglin Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1551-1562,共12页
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f... This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages. 展开更多
关键词 Open pit coal mine Coal seam blasting sealing materials Block size optimization Numerical simulation
下载PDF
Air tightness of compressed air storage energy caverns with polymer sealing layer subjected to various air pressures
11
作者 Shikang Qin Caichu Xia Shuwei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2105-2116,共12页
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper... During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased. 展开更多
关键词 Compressed air storage energy Polymer sealing layer Air tightness Permeability coefficient Air density
下载PDF
Experimental Investigation on the Effect of Seal Presence on the Behavior of Double-Deck Floating Roofs in Cylindrical Steel Storage Tanks
12
作者 Alireza Doustvandi Mehrzad Tahamouli Roudsari Behnoush Niazi 《Structural Durability & Health Monitoring》 EI 2023年第1期55-70,共16页
Liquid storage,particularly oil and petrochemical products which are considered hazardous liquid,are an important part of the oil industry.Thin-walled vertical cylindrical steel storage tanks are widely used in recent... Liquid storage,particularly oil and petrochemical products which are considered hazardous liquid,are an important part of the oil industry.Thin-walled vertical cylindrical steel storage tanks are widely used in recent years.Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences.For instance,huge economic losses,environmental damages,and casualities,many studies have been done about these structures.past studies showed that liquid storage tanks,equipped with a floating roof,are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one of the most destructive natural hazards.The reason is that such tanks are made of two separated parts(shell and roof)which each may have its own responses;sometimes causing resonance phenomenon and so that,roof movements,rooffluid interaction,roof-shell interaction,and also the way they are attached should still be investigated.Experimental tests of floating roof’s vertical fluctuation was performed in a full-scale reservoir tank and assessing of the results demonstrated that presence of a seal between floating roof and shell plate can significantly increase damping ratio in liquid sloshing and also suppress the roof`s vertical displacements.In other words,seal can control a floating roof and make it stop moving vertically over few cycles. 展开更多
关键词 Floating roof tanks seal master SLOSHING vertical cylindrical tanks sloshing period DAMPING
下载PDF
甘蔗制造! 德国SEALABLE公司研发环保型隧道管片密封垫
13
《隧道建设(中英文)》 CSCD 北大核心 2023年第6期1034-1034,共1页
目前,大部分的管片密封垫采用三元乙丙橡胶制成。这种材料耐臭氧、耐热、耐老化,性能优异,是常见的建筑防水材料。三元乙丙橡胶主要使用乙烯和丙烯生产,这些原材料传统上都是从原油中提取的。最近,德国的隧道管片密封垫制造商SEALABLE... 目前,大部分的管片密封垫采用三元乙丙橡胶制成。这种材料耐臭氧、耐热、耐老化,性能优异,是常见的建筑防水材料。三元乙丙橡胶主要使用乙烯和丙烯生产,这些原材料传统上都是从原油中提取的。最近,德国的隧道管片密封垫制造商SEALABLE开始尝试从甘蔗中提取生物基乙烯,以此作为原材料来生产隧道管片密封垫。据称,这种使用甘蔗生产的管片密封垫的材料特性和传统管片密封垫没有不同,不会对性能产生负面影响。 展开更多
关键词 三元乙丙橡胶 建筑防水材料 密封垫 甘蔗生产 管片 材料特性 耐老化 seal
下载PDF
基于PTFE矩形密封圈的高压容器密封结构设计 被引量:1
14
作者 鲁寨军 孙永龙 钟睦 《润滑与密封》 CAS CSCD 北大核心 2024年第4期95-102,共8页
PTFE矩形密封圈具有耐化学性能好、截面稳定性高等优点,可以有效解决腐蚀性介质的密封问题。但在实际使用中,PTFE矩形密封圈及其适配沟槽的尺寸设计缺乏参考依据。针对上述问题,根据高压容器端面密封结构的形状与受力特征,在Ansys Workb... PTFE矩形密封圈具有耐化学性能好、截面稳定性高等优点,可以有效解决腐蚀性介质的密封问题。但在实际使用中,PTFE矩形密封圈及其适配沟槽的尺寸设计缺乏参考依据。针对上述问题,根据高压容器端面密封结构的形状与受力特征,在Ansys Workbench中建立PTFE矩形密封圈的二维轴对称模型,采用双线性等向强化模型表征PTFE的力学性能,对基于PTFE矩形密封圈的高压容器端面密封结构进行分析和设计,讨论压缩率、PTFE矩形密封圈几何参数和沟槽结构参数对高压容器端面密封性能的影响。结果表明,压缩率、矩形圈的高度和宽度以及矩形圈与沟槽侧壁的间隙对密封性能的影响较大,而内径对密封性能的影响较小,因而设计时应优先考虑沟槽深度、矩形圈的截面尺寸以及与沟槽的装配位置等参数。确定PTFE矩形密封圈及适配沟槽的尺寸后,采用有限元仿真手段验证了设计的密封结构在常温30 MPa高压下的密封性能,证实了设计的合理性。 展开更多
关键词 PTFE矩形密封圈 高压容器 密封结构 密封性能
下载PDF
A multiphysical-geochemical coupling model for caprock sealing efficiency in CO_(2) geosequestration
15
作者 Jianguo Wang Huimin Wang +4 位作者 Xiaolin Wang Shengqi Yang Hongtao Wu Chunfai Leung Jiali Tian 《Deep Underground Science and Engineering》 2023年第2期188-203,共16页
Precipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO_(2) geosequestration.Geochemical reactions modify the caprock sealing efficiency with self-limiting or self-enhancemen... Precipitation or dissolution due to geochemical reactions has been observed in the caprocks for CO_(2) geosequestration.Geochemical reactions modify the caprock sealing efficiency with self-limiting or self-enhancement.However,the effect of this modification on the caprock sealing efficiency has not been fully investigated through multiphysical-geochemical coupling analysis.In this study,a multiphysical-geochemical coupling model was proposed to analyze caprock sealing efficiency.This coupling model considered the full couplings of caprock deformation,two-phase flow,CO_(2) concentration diffusion,geochemical reaction,and CO_(2) sorption.The two-phase flow only occurs in the fracture network and the CO_(2) may partially dissolve into water and diffuse through the concentration difference.The dissolved CO_(2) has geochemical reactions with some critical minerals,thus altering flow channels.The CO_(2) in the fracture network diffuses into matrix,causing the matrix swelling.This fully coupling model was validated with a penetration experiment on a cement cube and compared with two other models for CO_(2) storage plumes.Finally,the effects of geochemical reactions on penetration depth and pore pressure were studied through parametric study.The numerical simulations reveal that the coupling of geochemical reactions and matrix diffusion significantly affect the caprock sealing efficiency.Geochemical reactions occur at a short time after the arrival of CO_(2) concentration and modify the fracture porosity.The CO_(2) diffusion into the matrix requires a much longer time and mainly induces matrix swelling.These effects may produce selfenhancement or self-limiting depending on the flow rate in the fracture network,thus significantly modifying caprock sealing efficiency. 展开更多
关键词 caprock sealing efficiency CO_(2)diffusion CO_(2)geosequestration geochemical reaction sorption strain
下载PDF
小行星样品密封设计及验证
16
作者 王春勇 马动涛 +3 位作者 王名亮 王波 陆登柏 杜永刚 《真空科学与技术学报》 CAS CSCD 北大核心 2024年第2期110-114,共5页
中国计划开展探测编号为2016H03的近地小行星并采集样品返回地面,测定小行星样品的物理性质、化学成分与矿物成分,为小行星起源与演化、太阳系的形成与演化过程提供科学依据。针对中国首次近地小行星采样封装任务,设计多种样密封方案,... 中国计划开展探测编号为2016H03的近地小行星并采集样品返回地面,测定小行星样品的物理性质、化学成分与矿物成分,为小行星起源与演化、太阳系的形成与演化过程提供科学依据。针对中国首次近地小行星采样封装任务,设计多种样密封方案,综合考虑密封力、密封面样品颗粒污染物防护等因素,采用双弹性体径向密封方案,并开展密封方案验证工作,通过高温、低温及模拟尘埃污染漏率试验,密封漏率优于5×10^(-6)Pa·m^(3)·s^(-1),满足小行星样品密封要求。 展开更多
关键词 小行星 低温硅橡胶 样品密封 径向密封
下载PDF
特高压平板闸阀设计与密封性能分析 被引量:1
17
作者 樊春明 郑家伟 +3 位作者 杜文波 韩传军 刘鸣 李中华 《石油矿场机械》 CAS 2024年第1期44-49,共6页
针对特高压井口平板闸阀设计指导空缺问题,参考API 6A和API 6D标准中的平板闸阀设计参数确定方法,给出175 MPa工作内压下阀体通径为78 mm的平板闸阀设计参数,补充并完善了国内外特高压井口平板闸阀设计方法,对所设计的平板闸阀采用有限... 针对特高压井口平板闸阀设计指导空缺问题,参考API 6A和API 6D标准中的平板闸阀设计参数确定方法,给出175 MPa工作内压下阀体通径为78 mm的平板闸阀设计参数,补充并完善了国内外特高压井口平板闸阀设计方法,对所设计的平板闸阀采用有限元法分析其在螺栓预紧工况、额定工作内压工况和1.5倍静水压工况下的密封性能。所设计的平板闸阀可以满足密封准则,且能应对一定量的动载荷,可为特高压井口平板闸阀设计提供参考。 展开更多
关键词 特高压 井口装备 平板闸阀 密封 载荷
下载PDF
具有圆度误差的径向金属密封接触应力研究
18
作者 杨仪伟 何光杰 +2 位作者 何东升 庄雯劼 郑严 《润滑与密封》 CAS CSCD 北大核心 2024年第5期102-111,共10页
由于加工圆度误差的影响,井下流量控制阀径向金属密封接触应力分布不均匀,从而影响密封性能。利用有限元方法研究具有圆度误差的径向金属密封唇部接触应力分布,并分析圆度误差对径向金属密封接触应力的影响;基于有限元分析结果提出径向... 由于加工圆度误差的影响,井下流量控制阀径向金属密封接触应力分布不均匀,从而影响密封性能。利用有限元方法研究具有圆度误差的径向金属密封唇部接触应力分布,并分析圆度误差对径向金属密封接触应力的影响;基于有限元分析结果提出径向金属密封接触应力分布的理论解析式,并进行误差分析。具有圆度误差的径向金属密封唇部接触应力分布的理论解与数值解相符,各参数引起的最大接触应力的平均相对误差约为10%。根据具有圆度误差的径向金属密封副接触应力的分布规律,提出合理的过盈量函数,修正了径向金属密封轴对称结构的悬臂梁模型的接触应力理论关系式,得出了圆度误差下的径向金属密封接触应力分布规律。研究结果为井下流量控制阀径向金属密封的设计提供了理论指导。 展开更多
关键词 径向金属密封 金属密封圈 圆度误差 接触应力 流量控制阀
下载PDF
特殊螺纹接头密封面微滑接触行为研究
19
作者 曹银萍 刘渝 +2 位作者 于洋 李贞贞 窦益华 《润滑与密封》 CAS CSCD 北大核心 2024年第4期18-26,共9页
特殊螺纹接头在井下服役期间受到交变载荷作用,导致接头密封面处发生微滑,影响接头的密封性能。为研究特殊螺纹接头密封面处的微滑接触行为,基于弹性杆振动微分方程,建立了特殊螺纹接头微滑模型,分析了接头密封面的黏着-滑移临界区域及... 特殊螺纹接头在井下服役期间受到交变载荷作用,导致接头密封面处发生微滑,影响接头的密封性能。为研究特殊螺纹接头密封面处的微滑接触行为,基于弹性杆振动微分方程,建立了特殊螺纹接头微滑模型,分析了接头密封面的黏着-滑移临界区域及载荷-位移的迟滞特性;利用数值仿真软件建立了接头摩擦接触有限元模型,考察不同内压载荷、位移幅值和摩擦因数的影响下,接头密封面接触压力、相对滑移距离和剪切摩擦力的变化规律,得到了接头密封面处黏着-滑移状态的临界转化范围。研究结果表明:接头的摩擦接触有限元模型可模拟井下实际工况下接头密封面的微滑接触行为;随着内压载荷的增加,相对滑移距离减小、剪切摩擦力和黏着长度增加;随着位移幅值的增加,相对滑移距离增加,黏着长度减小;在内压载荷60~70 MPa之间,位移幅值0.02~0.025 mm之间,分别在密封面处发生黏着-滑移状态的临界转化;随着摩擦因数的增加,密封面相对滑移距离减小,剪切摩擦力和黏着长度增加。研究结果可为动载作用下特殊螺纹接头密封性研究提供参考。 展开更多
关键词 特殊螺纹接头 密封面 微滑接触 密封性能 滑移状态
下载PDF
考虑表面粗糙度与空化效应的组合密封润滑分析
20
作者 张毅 熊子杰 +2 位作者 李大建 熊思阳 钟思鹏 《排灌机械工程学报》 CSCD 北大核心 2024年第4期388-394,425,共8页
为了研究表面粗糙度及空化效应对压裂泵柱塞密封副密封性能的影响,基于稳态Reynolds方程,建立了粗糙峰和空化效应影响下组合密封的弹流润滑数值模型.在数值模拟基础上,采用有限体积法求解稳态Reynolds方程,研究了密封副在表面粗糙度影... 为了研究表面粗糙度及空化效应对压裂泵柱塞密封副密封性能的影响,基于稳态Reynolds方程,建立了粗糙峰和空化效应影响下组合密封的弹流润滑数值模型.在数值模拟基础上,采用有限体积法求解稳态Reynolds方程,研究了密封副在表面粗糙度影响下的油膜厚度、油膜压力、油膜流速分布规律,以及不同的往复速度和滑环表面粗糙度对密封性能的影响.结果表明,外行程流体动压效应微弱,油膜在空气侧附近会出现空化现象;较高的往复速度有利于减小泄漏量及摩擦阻力;滑环表面粗糙度从0.8μm增加到1.8μm时,净泄漏量与外行程摩擦力分别升高了180.4%和11.17%.因此,在工作过程中应设置较高的往复速度和使用较低粗糙度的滑环以提高密封性能. 展开更多
关键词 压裂泵柱塞密封副 表面粗糙度 混合润滑模型 密封性能
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部