The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se...The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.展开更多
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been...The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.展开更多
Based on analysis of flow field of the rotary seal using sealing ring, mechanical models under the condition of full film friction and mixed film friction were established respectively. The influence of friction state...Based on analysis of flow field of the rotary seal using sealing ring, mechanical models under the condition of full film friction and mixed film friction were established respectively. The influence of friction state of the sealing ring on seal performance was also discussed. The relation between force characteristic and structural parameters of the sealing ring was analyzed. Analytical results indicate that friction state mainly depends on structural parameters of the sealing ring. The expression of calculating friction torque under the condition of mixed film friction was deduced. Experiment verification had been done. Experimental results agree with the deducing theoretical conclusions on the whole. It lays the foundation for design of new type of sealing ring used in composite transmission.展开更多
The design of a bolted flat cover is extremely important for the structural integrity of pressure vessels.The present design codes provide the thickness calculation equations for a bolted flat cover with single metal ...The design of a bolted flat cover is extremely important for the structural integrity of pressure vessels.The present design codes provide the thickness calculation equations for a bolted flat cover with single metal gasket.However,the rules for a bolted flat cover with double metal sealing rings are not developed to date.In the study,a new thickness calculation equation for the bolted flat cover with double metal sealing rings is proposed.First,the theoretical stress solution for bolted flat cover with the double metal sealing rings is obtained,based on the theory of simply supported circular plate and then verified using the results from finite element analyses.The results indicate that the influence of double metal sealing ring on the stress of the flat cover is more serious compared to single metal gasket.Second,a more accurate and reasonable equation is proposed to calculate the thickness of bolted flat cover with double metal sealing rings based on the derived theoretical equations of maximum stress.Finally,the influence of linear load and the spacing between rings on the thickness are discussed.Subsequently,a few suggestions are provided to design low-pressure or atmosphere pressure vessels.The study provides a theoretical foundation to develop design codes of pressure vessels in nuclear reactors.展开更多
The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
基金Supported by National Key Basic Research Program of China(973Program,Grant No.2012CB026003)National Science and Technology Major Project of China(Grant No.ZX06901)
文摘The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
文摘The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.
基金Sponsored by the Ministerial Level Foundation (404020806)
文摘Based on analysis of flow field of the rotary seal using sealing ring, mechanical models under the condition of full film friction and mixed film friction were established respectively. The influence of friction state of the sealing ring on seal performance was also discussed. The relation between force characteristic and structural parameters of the sealing ring was analyzed. Analytical results indicate that friction state mainly depends on structural parameters of the sealing ring. The expression of calculating friction torque under the condition of mixed film friction was deduced. Experiment verification had been done. Experimental results agree with the deducing theoretical conclusions on the whole. It lays the foundation for design of new type of sealing ring used in composite transmission.
基金supported by the‘‘Strategic Priority Research Program’’of the Chinese Academy of Sciences(No.XDA02010000)
文摘The design of a bolted flat cover is extremely important for the structural integrity of pressure vessels.The present design codes provide the thickness calculation equations for a bolted flat cover with single metal gasket.However,the rules for a bolted flat cover with double metal sealing rings are not developed to date.In the study,a new thickness calculation equation for the bolted flat cover with double metal sealing rings is proposed.First,the theoretical stress solution for bolted flat cover with the double metal sealing rings is obtained,based on the theory of simply supported circular plate and then verified using the results from finite element analyses.The results indicate that the influence of double metal sealing ring on the stress of the flat cover is more serious compared to single metal gasket.Second,a more accurate and reasonable equation is proposed to calculate the thickness of bolted flat cover with double metal sealing rings based on the derived theoretical equations of maximum stress.Finally,the influence of linear load and the spacing between rings on the thickness are discussed.Subsequently,a few suggestions are provided to design low-pressure or atmosphere pressure vessels.The study provides a theoretical foundation to develop design codes of pressure vessels in nuclear reactors.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.