The effects of a magnetic dipole on a nonlinear thermally radiative ferromagnetic liquidflowing over a stretched surface in the presence of Brownian motion and thermophoresis are investigated.By means of a similarity t...The effects of a magnetic dipole on a nonlinear thermally radiative ferromagnetic liquidflowing over a stretched surface in the presence of Brownian motion and thermophoresis are investigated.By means of a similarity transformation,ordinary differential equations are derived and solved afterwards using a numerical(the BVP4C)method.The impact of various parameters,namely the velocity,temperature,concentration,is presented graphically.It is shown that the nanoparticles properties,in conjunction with the magnetic dipole effect,can increase the thermal conductivity of the engineered nanofluid and,consequently,the heat transfer.Comparison with earlier studies indicates high accuracy and effectiveness of the numerical approach.An increase in the Brow-nian motion parameter and thermophoresis parameter enhances the concentration and the related boundary layer.The skin-friction rises when the viscosity parameter is increased.A larger value of the ferromagnetic para-meter results in a higher skin-friction and,vice versa,in a smaller Nusselt number.展开更多
A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing...A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing.We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes.We study three cases of these solitons:spaced three stripes apart,one stripe apart,and confined to the same stripe.For the case of three stripes apart,all four types have stable results,but for the case of one stripe apart,stable solutions can only be found atω_(1)=ω_(2),and for the condition of dipole solitons confined to one stripe,stable solutions exist only for Type1 and Type3 atω_(1)=ω_(2).The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation,and soliton solutions are shown to exist in the multistability case.In addition,the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated.Finally,possible approaches for the experimental realization of the solitons are outlined.展开更多
Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic st...Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.展开更多
Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor...Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor.It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip.For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment,dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001μg·ml-1 and to 0.01μg·ml-1,respectively.Furthermore,when aflatoxin B1 concentrations are 0.1μg·ml-1,1μg·ml-1,10μg·ml-1 and 100μg·ml-1,dip amplitudes of 0.2179,0.226,0.2384 and 0.2527 and dip redshifts of 10.1 GHz,20.1 GHz,27.7 GHz and 37.6 GHz are respectively observed.These results illustrate high-sensitivity,label-free detection of aflatoxin B1,enriching the applications of sensors in the terahertz domain.展开更多
We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loadin...We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.展开更多
The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered.The governing nonlinear differential equations are solve...The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered.The governing nonlinear differential equations are solved numerically using a finite element approach,which is properly validated through comparison with earlier results available in the literature.The results for the velocity and temperature fields are provided for different values of the Reynolds number,ferromagnetic response number,Prandtl number,and viscous dissipation parameter.The influence of some physical parameters on skin friction and heat transfer on the walls of the cylinder is also investigated.The applicability of this research to heat control in electronic devices is discussed to a certain extent.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,w...Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.展开更多
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in...Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.展开更多
Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru...Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.展开更多
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga...Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.展开更多
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge...An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.展开更多
On July 4,2006,a MS5.1 earthquake occurred in Wen'an county of Hebei Province of which the epicenter is near the Beijing city.The six geoelectric field monitoring stations have been in operation for several years ...On July 4,2006,a MS5.1 earthquake occurred in Wen'an county of Hebei Province of which the epicenter is near the Beijing city.The six geoelectric field monitoring stations have been in operation for several years around the Beijing area to examine the relationship between electric field changes and earthquake.This paper firstly explains the principle of the eliminating noise method by using multi-dipole observation system of the geoelectric field.Then the data observed at the stations are studied and a lot of abnormal signals preceding the Wen'an earthquake are selected,of which five abnormal signals of the geoelectric field are finally recognized as the precursory signals.The result shows that 1 there probably exists the precursory signals of the geoelectric field preceding the Wen'an earthquake;2 there are sensitive sites in the spatial distribution of the abnormal variation of the geoelectric field before the quack;3 the anomalous signals do not appear synchronously,and their durations are not same at dif-ferent stations;4 the amplitudes of the abnormal signals recorded at Baodi station are small,but large at Changli station,while the latter is farther from the epicentral area than the former.展开更多
The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes fro...The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes from the coupling scheme at the airsea interface, e.g., flux anomaly coupling scheme for the former anddirect coupling scheme for the latter. The FGCM0 is also a directly coupled GCM, but its atmospheric componentmodel is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPM0 and CPM1.All three coupled models show El Nio-like interannual variability in the tropic Pacific, but the FGCM0 shows a bitstronger amplitude of El Nio events and both the CPM0 and the CPM1 show much weaker amplitude than theobserved one. In the meanwhile, the quasi-biennial variability dominates in the FGCM0 simulations, and 4 a andlonger periods are significant in both the CPM0 and CPM1 models. As the El Nio events simulated by the threecoupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCM0 andweaker from both the CPM0 and CPM1 models than those from observation.展开更多
BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The locat...BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The location of epileptic foci and magnetic stimulation sites remain uncertain. The effects of rTMS on electroencephalogram and seizure remain unclear in epileptic patients following dipole source localization. OBJECTIVE: To investigate the effects of low-frequency rTMS on electroencephalogram and seizure in temporal lobe epilepsy patients after dipole source localization. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the outpatient clinic Department of Neurology, Hospital Affiliated to North Sichuan Medical College from December 2003 to February 2007. PARTICIPANTS: A total of 30 temporal lobe epilepsy patients, comprising 19 males and 11 females, aged 1749 years, presented with epileptiform discharges and were enrolled for this study. Disease course ranged between 1-6 years, with 1-5 seizures per month. Imaging examinations revealed 11 patients with structural changes in the brain. The patients were randomly and equally assigned into drug treatment and transcranial magnetic stimulation (TMS) groups. METHODS: Patients in the drug treatment group were orally treated with carbamazepine. Patients in the TMS group received oral carbamazepine treatment of and TMS. A Maglite-r25 magnetic stimulator (Dantec Dynamics, Denmark) was used to stimulate epileptic foci in the temporal lobe following electroencephalogram dipole localization (1 Hz, 90% threshold intensity, at a stimulation frequency of 500 times, once a day, for 7 days). MAIN OUTCOME MEASURES: At 30 days after TMS, seizure frequency and rate of epileptiform discharges were observed in patients from both groups. Therapeutic safety was investigated during treatment. RESULTS: Within 30 days of treatment, there were no significant differences in seizure frequency between the TMS group (1.5 ± 0.3) seizures and the drug treatment group [(1.9± 0.4) seizures] (P 〉 0.05). The rate of epileptiform discharges [27% (4/15)] was significantly less in the TMS group than in the drug treatment group [73% (11/15)] (P 〈 0.05). During TMS, five patients suffered from transient mild headache, but were completely relieved within 2 hours. CONCLUSION: Low-frequency rTMS exhibited inhibitory effects on epileptiform discharges over a short period of time, and decreased seizure frequency to some degree. Results from the present study suggested that low-frequency rTMS is safe.展开更多
To identify refl ector fractures near borehole by using dipole-source refl ected-shearwave logging, we need to understand the relation between the amplitude of the refl ected shear wave and the source radiation, boreh...To identify refl ector fractures near borehole by using dipole-source refl ected-shearwave logging, we need to understand the relation between the amplitude of the refl ected shear wave and the source radiation, borehole conditions, and attenuation owing to the surrounding formations. To assess the effect of these factors on the amplitude of the refl ected waves, we first studied the radiation performance and radiation direction of the dipole source in fast, medium, and slow formations by using the asymptotic solution in the far fi eld of the borehole. Then, the relation between the fracture parameters, and the refl ected-shear-wave amplitude as well as the ratio of the refl ected-shear-wave amplitude to the direct-wave amplitude (relative amplitude, RA) was evaluated by the three-dimensional fi nite-difference (3D FDTD) method. Finally, the fracture detection capability of the dipole reflected-shear-wave logging tool in different formations was analyzed by using the RA. The results suggest that the radiation amplitude of the SH-wave in the slow formation is weaker than those in the fast and medium formations, and the amplitude of the refl ected shear wave is lower. However, the RA in the slow formation is close to or even greater than in the fast and medium formations, which means that dipole-source shear-wave logging has the same or even better fracture detection capability in the slow formation as in the fast and medium formations. In addition, when RA is small, there is a good correlation between the RA and the various fracture parameters in the different types of formation, which can be used in determining the lower limit of the fracture parameters identifi ed by refl ection logging.展开更多
The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-...The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-April with higher SST in the west region and lower SST in the east region as the positive phase and higher SST in the east region and lower SST in the west region as the negative phase. Generally, the amplitude of the positive phase is larger than the negative phase. The interannual variation (4-5 year period) and the interdecadal variation (25-30 year period) also exist in the dipole. The analyses also showed the significant impact of the Indian Ocean dipole on the Asian monsoon activity, because the lower tropospheric wind fields over the Southern Asia, the Tibetan high in the upper troposphere and the subtropical high over the northwestern Pacific are all related to the Indian Ocean dipole. On the other, the Indian Ocean dipole still has significant impact on atmospheric circulation and climate in North America and the southern Indian Ocean region (including Australia and South Africa).展开更多
Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concen...Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concentrated piezoelectric forces with equaldensity and opposite sign. The interaction between crack and electricdipole in piezoelectricity is analyzed. The closed form solutions,including those for stress and electric displacement, crack openingdisplacement and electric potential, are obtained. The function ofpi- ezoelectric anisotropic direction, p_α(θ)=cosθ+p_αsinθ, canbe used to express the influence of a dipole's direction. In the casethat a dipole locates near crack tip, the piezoelectric stressintensity factor is a power function with -3/2 index of the distancebetween dipole and crack tip.展开更多
An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiatio...An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.展开更多
文摘The effects of a magnetic dipole on a nonlinear thermally radiative ferromagnetic liquidflowing over a stretched surface in the presence of Brownian motion and thermophoresis are investigated.By means of a similarity transformation,ordinary differential equations are derived and solved afterwards using a numerical(the BVP4C)method.The impact of various parameters,namely the velocity,temperature,concentration,is presented graphically.It is shown that the nanoparticles properties,in conjunction with the magnetic dipole effect,can increase the thermal conductivity of the engineered nanofluid and,consequently,the heat transfer.Comparison with earlier studies indicates high accuracy and effectiveness of the numerical approach.An increase in the Brow-nian motion parameter and thermophoresis parameter enhances the concentration and the related boundary layer.The skin-friction rises when the viscosity parameter is increased.A larger value of the ferromagnetic para-meter results in a higher skin-friction and,vice versa,in a smaller Nusselt number.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274077 and 11874112)the Research Fund of the Guangdong Hong Kong Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Graduate Innovative Talents Training Program of Foshan University.
文摘A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing.We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes.We study three cases of these solitons:spaced three stripes apart,one stripe apart,and confined to the same stripe.For the case of three stripes apart,all four types have stable results,but for the case of one stripe apart,stable solutions can only be found atω_(1)=ω_(2),and for the condition of dipole solitons confined to one stripe,stable solutions exist only for Type1 and Type3 atω_(1)=ω_(2).The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation,and soliton solutions are shown to exist in the multistability case.In addition,the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated.Finally,possible approaches for the experimental realization of the solitons are outlined.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274178 and 12174148)Support of High Performance Computing Center of Jilin Universitythe high-performance computing cluster Tiger@IAMP。
文摘Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61927813,61865009,and 12104203)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB201007).
文摘Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor.It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip.For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment,dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001μg·ml-1 and to 0.01μg·ml-1,respectively.Furthermore,when aflatoxin B1 concentrations are 0.1μg·ml-1,1μg·ml-1,10μg·ml-1 and 100μg·ml-1,dip amplitudes of 0.2179,0.226,0.2384 and 0.2527 and dip redshifts of 10.1 GHz,20.1 GHz,27.7 GHz and 37.6 GHz are respectively observed.These results illustrate high-sensitivity,label-free detection of aflatoxin B1,enriching the applications of sensors in the terahertz domain.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92365208,11934002,and 11920101004)the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)+1 种基金the Science and Technology Major Project of Shanxi(Grant No.202101030201022)the Space Application System of China Manned Space Program。
文摘We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
文摘The thermal behavior of an electrically non-conducting magnetic liquid flowing over a stretching cylinder under the influence of a magnetic dipole is considered.The governing nonlinear differential equations are solved numerically using a finite element approach,which is properly validated through comparison with earlier results available in the literature.The results for the velocity and temperature fields are provided for different values of the Reynolds number,ferromagnetic response number,Prandtl number,and viscous dissipation parameter.The influence of some physical parameters on skin friction and heat transfer on the walls of the cylinder is also investigated.The applicability of this research to heat control in electronic devices is discussed to a certain extent.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.
文摘Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2022S02the National Natural Science Foundation of China under contract No.41976021.
文摘Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreoversupported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions
文摘Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
文摘Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.
基金supported by Chinese National Programs for Fundamental Research and Development(No.2012CB416605)the National Natural Science Foundation of China(No.41174090)Development Project of National Key Scientific Equipment(No.ZDYZ2012-1-05-04)
文摘An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.
基金Joint Seismological Science Foundation of China (106079).
文摘On July 4,2006,a MS5.1 earthquake occurred in Wen'an county of Hebei Province of which the epicenter is near the Beijing city.The six geoelectric field monitoring stations have been in operation for several years around the Beijing area to examine the relationship between electric field changes and earthquake.This paper firstly explains the principle of the eliminating noise method by using multi-dipole observation system of the geoelectric field.Then the data observed at the stations are studied and a lot of abnormal signals preceding the Wen'an earthquake are selected,of which five abnormal signals of the geoelectric field are finally recognized as the precursory signals.The result shows that 1 there probably exists the precursory signals of the geoelectric field preceding the Wen'an earthquake;2 there are sensitive sites in the spatial distribution of the abnormal variation of the geoelectric field before the quack;3 the anomalous signals do not appear synchronously,and their durations are not same at dif-ferent stations;4 the amplitudes of the abnormal signals recorded at Baodi station are small,but large at Changli station,while the latter is farther from the epicentral area than the former.
基金the NationalNatural Foundation of China under contract Nos 40231004 and 40221503 the National Key Science Project of China under contract No.G200078502.
文摘The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes from the coupling scheme at the airsea interface, e.g., flux anomaly coupling scheme for the former anddirect coupling scheme for the latter. The FGCM0 is also a directly coupled GCM, but its atmospheric componentmodel is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPM0 and CPM1.All three coupled models show El Nio-like interannual variability in the tropic Pacific, but the FGCM0 shows a bitstronger amplitude of El Nio events and both the CPM0 and the CPM1 show much weaker amplitude than theobserved one. In the meanwhile, the quasi-biennial variability dominates in the FGCM0 simulations, and 4 a andlonger periods are significant in both the CPM0 and CPM1 models. As the El Nio events simulated by the threecoupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCM0 andweaker from both the CPM0 and CPM1 models than those from observation.
基金the Youth Foundation Program of Sichuan Province,No.04ZQ026-010
文摘BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The location of epileptic foci and magnetic stimulation sites remain uncertain. The effects of rTMS on electroencephalogram and seizure remain unclear in epileptic patients following dipole source localization. OBJECTIVE: To investigate the effects of low-frequency rTMS on electroencephalogram and seizure in temporal lobe epilepsy patients after dipole source localization. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the outpatient clinic Department of Neurology, Hospital Affiliated to North Sichuan Medical College from December 2003 to February 2007. PARTICIPANTS: A total of 30 temporal lobe epilepsy patients, comprising 19 males and 11 females, aged 1749 years, presented with epileptiform discharges and were enrolled for this study. Disease course ranged between 1-6 years, with 1-5 seizures per month. Imaging examinations revealed 11 patients with structural changes in the brain. The patients were randomly and equally assigned into drug treatment and transcranial magnetic stimulation (TMS) groups. METHODS: Patients in the drug treatment group were orally treated with carbamazepine. Patients in the TMS group received oral carbamazepine treatment of and TMS. A Maglite-r25 magnetic stimulator (Dantec Dynamics, Denmark) was used to stimulate epileptic foci in the temporal lobe following electroencephalogram dipole localization (1 Hz, 90% threshold intensity, at a stimulation frequency of 500 times, once a day, for 7 days). MAIN OUTCOME MEASURES: At 30 days after TMS, seizure frequency and rate of epileptiform discharges were observed in patients from both groups. Therapeutic safety was investigated during treatment. RESULTS: Within 30 days of treatment, there were no significant differences in seizure frequency between the TMS group (1.5 ± 0.3) seizures and the drug treatment group [(1.9± 0.4) seizures] (P 〉 0.05). The rate of epileptiform discharges [27% (4/15)] was significantly less in the TMS group than in the drug treatment group [73% (11/15)] (P 〈 0.05). During TMS, five patients suffered from transient mild headache, but were completely relieved within 2 hours. CONCLUSION: Low-frequency rTMS exhibited inhibitory effects on epileptiform discharges over a short period of time, and decreased seizure frequency to some degree. Results from the present study suggested that low-frequency rTMS is safe.
基金supported by the National Petroleum Major Projects(No.2017ZX05019-005)CNPC Fundamental Research Projects(No.2016A-3605)
文摘To identify refl ector fractures near borehole by using dipole-source refl ected-shearwave logging, we need to understand the relation between the amplitude of the refl ected shear wave and the source radiation, borehole conditions, and attenuation owing to the surrounding formations. To assess the effect of these factors on the amplitude of the refl ected waves, we first studied the radiation performance and radiation direction of the dipole source in fast, medium, and slow formations by using the asymptotic solution in the far fi eld of the borehole. Then, the relation between the fracture parameters, and the refl ected-shear-wave amplitude as well as the ratio of the refl ected-shear-wave amplitude to the direct-wave amplitude (relative amplitude, RA) was evaluated by the three-dimensional fi nite-difference (3D FDTD) method. Finally, the fracture detection capability of the dipole reflected-shear-wave logging tool in different formations was analyzed by using the RA. The results suggest that the radiation amplitude of the SH-wave in the slow formation is weaker than those in the fast and medium formations, and the amplitude of the refl ected shear wave is lower. However, the RA in the slow formation is close to or even greater than in the fast and medium formations, which means that dipole-source shear-wave logging has the same or even better fracture detection capability in the slow formation as in the fast and medium formations. In addition, when RA is small, there is a good correlation between the RA and the various fracture parameters in the different types of formation, which can be used in determining the lower limit of the fracture parameters identifi ed by refl ection logging.
基金This work was supported by the National Key Basic Science Program in China (Grant No.1998040903) and Chinese NSF (Grant No 498
文摘The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-April with higher SST in the west region and lower SST in the east region as the positive phase and higher SST in the east region and lower SST in the west region as the negative phase. Generally, the amplitude of the positive phase is larger than the negative phase. The interannual variation (4-5 year period) and the interdecadal variation (25-30 year period) also exist in the dipole. The analyses also showed the significant impact of the Indian Ocean dipole on the Asian monsoon activity, because the lower tropospheric wind fields over the Southern Asia, the Tibetan high in the upper troposphere and the subtropical high over the northwestern Pacific are all related to the Indian Ocean dipole. On the other, the Indian Ocean dipole still has significant impact on atmospheric circulation and climate in North America and the southern Indian Ocean region (including Australia and South Africa).
基金National Natural Science Foundation of China(No.10072033).
文摘Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concentrated piezoelectric forces with equaldensity and opposite sign. The interaction between crack and electricdipole in piezoelectricity is analyzed. The closed form solutions,including those for stress and electric displacement, crack openingdisplacement and electric potential, are obtained. The function ofpi- ezoelectric anisotropic direction, p_α(θ)=cosθ+p_αsinθ, canbe used to express the influence of a dipole's direction. In the casethat a dipole locates near crack tip, the piezoelectric stressintensity factor is a power function with -3/2 index of the distancebetween dipole and crack tip.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant No. 10974098), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009407), and the Specialized Research Fund for Doctoral Program of High Education of China (Grant No. 20093207120003).
文摘An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is pro- posed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductiv- ity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.