Herein, an electrocatalytic protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been disclosed. Methanol is activated and utilized as the C1 source to cyclize with 2-aminobenzamides.This cyclization reac...Herein, an electrocatalytic protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been disclosed. Methanol is activated and utilized as the C1 source to cyclize with 2-aminobenzamides.This cyclization reaction proceeds conveniently(room temperature and air atmosphere) without any homogeneous metal catalysts, external oxidants, or bases. A wide variety of N,N-disubstituted 2,3-dihydroquinazolin-4(1H)-ones are obtained via this approach. Moreover, when methanol-d4is used, a deuterated methylene motif is incorporated into the N-heterocycles, providing an efficient approach to the deuterated N-heterocycles.展开更多
The manganese-catalyzed dehydrogenative coupling between methanol and amines for the synthesis of ureas and polyureas is described. Importantly, catalytic efficiency can be improved by the newly synthesized MACHO liga...The manganese-catalyzed dehydrogenative coupling between methanol and amines for the synthesis of ureas and polyureas is described. Importantly, catalytic efficiency can be improved by the newly synthesized MACHO ligands. Furthermore, this highly atom-economical protocol demonstrates a broad substrate scope with good functional group tolerance, producing H_(2)as the sole byproduct. Mechanistic studies disclose that formamide is formed through manganese-catalyzed formylation of amine with methanol.Subsequent dehydrogenation affords a transient isocyanate, which is attacked by another equivalent of amine to provide the final product.展开更多
基金financial support from the National Natural Science Foundation of China (No. 22061036)the program for youth science and technology innovation leader of Xinjiang Bingtuan (Nos. 2019CB026, CXRC201601)。
文摘Herein, an electrocatalytic protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been disclosed. Methanol is activated and utilized as the C1 source to cyclize with 2-aminobenzamides.This cyclization reaction proceeds conveniently(room temperature and air atmosphere) without any homogeneous metal catalysts, external oxidants, or bases. A wide variety of N,N-disubstituted 2,3-dihydroquinazolin-4(1H)-ones are obtained via this approach. Moreover, when methanol-d4is used, a deuterated methylene motif is incorporated into the N-heterocycles, providing an efficient approach to the deuterated N-heterocycles.
基金the financial support from the Fundamental Research Funds for the Central Universities (No.2232022A-09)the National Natural Science Foundation of China(No. 22001033)Natural Science Foundation of Shanghai (No.20ZR1401100)。
文摘The manganese-catalyzed dehydrogenative coupling between methanol and amines for the synthesis of ureas and polyureas is described. Importantly, catalytic efficiency can be improved by the newly synthesized MACHO ligands. Furthermore, this highly atom-economical protocol demonstrates a broad substrate scope with good functional group tolerance, producing H_(2)as the sole byproduct. Mechanistic studies disclose that formamide is formed through manganese-catalyzed formylation of amine with methanol.Subsequent dehydrogenation affords a transient isocyanate, which is attacked by another equivalent of amine to provide the final product.