The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to h...The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to high-value chemicals is dependent on efficient C1 assimilation pathways and microbial chassis adapted for efficient incorporation.Here,we opted to summarize the natural and synthetic C1 assimilation pathways and their key factors for metabolizing C1 feedstock.Accordingly,we discussed the metabolic engineering strategies for enabling the microbial utilization of C1 feedstocks for the bioproduction of value-added chemicals.In addition,we highlighted future perspectives of C1-based biomanufacturing for achieving a low-carbon footprint for the biosynthesis of chemicals.展开更多
基金supported by the Provincial Outstanding Youth Foundation of Jiangsu Province(BK20211529)the National Science Fund for Excellent Young Scholars(22122806)the Fundamental Research Funds for the Central Universities(JUSRP22031).
文摘The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to high-value chemicals is dependent on efficient C1 assimilation pathways and microbial chassis adapted for efficient incorporation.Here,we opted to summarize the natural and synthetic C1 assimilation pathways and their key factors for metabolizing C1 feedstock.Accordingly,we discussed the metabolic engineering strategies for enabling the microbial utilization of C1 feedstocks for the bioproduction of value-added chemicals.In addition,we highlighted future perspectives of C1-based biomanufacturing for achieving a low-carbon footprint for the biosynthesis of chemicals.