Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization r...Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant the constructed covariance matrix. Thus, we eigenvalue and the sum of all eigenvalues of eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.展开更多
The main function of the power communication business is to monitor,control and manage the power communication network to ensure normal and stable operation of the power communication network.Commu-nication services r...The main function of the power communication business is to monitor,control and manage the power communication network to ensure normal and stable operation of the power communication network.Commu-nication services related to dispatching data networks and the transmission of fault information or feeder automation have high requirements for delay.If processing time is prolonged,a power business cascade reaction may be triggered.In order to solve the above problems,this paper establishes an edge object-linked agent business deployment model for power communication network to unify the management of data collection,resource allocation and task scheduling within the system,realizes the virtualization of object-linked agent computing resources through Docker container technology,designs the target model of network latency and energy consumption,and introduces A3C algorithm in deep reinforcement learning,improves it according to scene characteristics,and sets corresponding optimization strategies.Mini-mize network delay and energy consumption;At the same time,to ensure that sensitive power business is handled in time,this paper designs the business dispatch model and task migration model,and solves the problem of server failure.Finally,the corresponding simulation program is designed to verify the feasibility and validity of this method,and to compare it with other existing mechanisms.展开更多
基金sponsored by National Key S&T Project of China(No.2011ZX05004-003)the Research Program of RIPED(No.101002kt0b52135)
文摘Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant the constructed covariance matrix. Thus, we eigenvalue and the sum of all eigenvalues of eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
基金funded by the“Research on Digitization and Intelligent Application of Low-Voltage Power Distribution Equipment”[SGSDDK00PDJS2000375]。
文摘The main function of the power communication business is to monitor,control and manage the power communication network to ensure normal and stable operation of the power communication network.Commu-nication services related to dispatching data networks and the transmission of fault information or feeder automation have high requirements for delay.If processing time is prolonged,a power business cascade reaction may be triggered.In order to solve the above problems,this paper establishes an edge object-linked agent business deployment model for power communication network to unify the management of data collection,resource allocation and task scheduling within the system,realizes the virtualization of object-linked agent computing resources through Docker container technology,designs the target model of network latency and energy consumption,and introduces A3C algorithm in deep reinforcement learning,improves it according to scene characteristics,and sets corresponding optimization strategies.Mini-mize network delay and energy consumption;At the same time,to ensure that sensitive power business is handled in time,this paper designs the business dispatch model and task migration model,and solves the problem of server failure.Finally,the corresponding simulation program is designed to verify the feasibility and validity of this method,and to compare it with other existing mechanisms.