目的利用3D卷积神经网络融合多序列MRI数据探究脑胶质瘤患者生存风险概率。材料与方法回顾性分析来自河南省人民医院影像归档和通信系统的63例术前行颅脑MRI检查的脑胶质瘤患者病例资料(私有病例数据),收集患者的T1加权成像、T2加权成像...目的利用3D卷积神经网络融合多序列MRI数据探究脑胶质瘤患者生存风险概率。材料与方法回顾性分析来自河南省人民医院影像归档和通信系统的63例术前行颅脑MRI检查的脑胶质瘤患者病例资料(私有病例数据),收集患者的T1加权成像、T2加权成像、T1增强加权成像、液体衰减反转恢复序列数据,结合公开数据集癌症影像档案库(The Cancer Imaging Archive,TCIA)的500例脑胶质瘤患者病例资料,由两名神经影像诊断医师在MRI图像上手动勾画病灶感兴趣区,根据患者生存期分为高风险组、中风险组和低风险组,构建3D卷积神经网络深度学习模型,将数据集按照3∶1∶1的方式划分为训练集、验证集和测试集评估脑胶质瘤患者的生存风险概率。563例病例数据的60%用于训练模型(所有私有病例数据用于训练),20%用于验证方法,20%用于测试结果。结果训练集中高、中、低风险组的受试者工作特征曲线下面积(area under the curve,AUC)分别为0.81、0.79、0.86,验证集中高、中、低风险组的AUC分别为0.74、0.78、0.81,测试集中高、中、低风险组的AUC分别为0.72、0.74、0.75。结论基于多序列MRI的深度学习模型能够为脑胶质瘤患者的生存预测提供辅助支持,为医生临床诊断和预后预测等方面提供定量信息,具有重要的科学价值和临床意义。展开更多
手势识别在人机交互中有着广泛的应用前景,近年来随着无线通信与物联网的飞速发展,几乎任何地方都部署了WiFi设备,并涌现了大批关于WiFi信道状态信息(Channel State Information,CSI)的手势识别方法,目前大多数基于CSI手势识别的研究仅...手势识别在人机交互中有着广泛的应用前景,近年来随着无线通信与物联网的飞速发展,几乎任何地方都部署了WiFi设备,并涌现了大批关于WiFi信道状态信息(Channel State Information,CSI)的手势识别方法,目前大多数基于CSI手势识别的研究仅针对了已知场景下的手势识别研究,对于未知场景,需要增加未知场景中的新数据进行额外的学习训练,否则识别精度将会大幅下降,限制了其实用性。针对这一问题,提出了一种基于3D卷积神经网络的CSI跨场景手势识别方法,该系统通过提取与场景无关的特征,并结合3D卷积神经网络学习模型来实现跨场景手势识别,在实验中使用网络公开数据集来验证该方法,结果显示该方法对于6个不同动作手势,在已知场景中的平均识别准确率达到了86.50%,在未知场景中的平均识别准确率达到了84.67%,能够实现跨场景的手势识别。展开更多
文摘目的利用3D卷积神经网络融合多序列MRI数据探究脑胶质瘤患者生存风险概率。材料与方法回顾性分析来自河南省人民医院影像归档和通信系统的63例术前行颅脑MRI检查的脑胶质瘤患者病例资料(私有病例数据),收集患者的T1加权成像、T2加权成像、T1增强加权成像、液体衰减反转恢复序列数据,结合公开数据集癌症影像档案库(The Cancer Imaging Archive,TCIA)的500例脑胶质瘤患者病例资料,由两名神经影像诊断医师在MRI图像上手动勾画病灶感兴趣区,根据患者生存期分为高风险组、中风险组和低风险组,构建3D卷积神经网络深度学习模型,将数据集按照3∶1∶1的方式划分为训练集、验证集和测试集评估脑胶质瘤患者的生存风险概率。563例病例数据的60%用于训练模型(所有私有病例数据用于训练),20%用于验证方法,20%用于测试结果。结果训练集中高、中、低风险组的受试者工作特征曲线下面积(area under the curve,AUC)分别为0.81、0.79、0.86,验证集中高、中、低风险组的AUC分别为0.74、0.78、0.81,测试集中高、中、低风险组的AUC分别为0.72、0.74、0.75。结论基于多序列MRI的深度学习模型能够为脑胶质瘤患者的生存预测提供辅助支持,为医生临床诊断和预后预测等方面提供定量信息,具有重要的科学价值和临床意义。
文摘手势识别在人机交互中有着广泛的应用前景,近年来随着无线通信与物联网的飞速发展,几乎任何地方都部署了WiFi设备,并涌现了大批关于WiFi信道状态信息(Channel State Information,CSI)的手势识别方法,目前大多数基于CSI手势识别的研究仅针对了已知场景下的手势识别研究,对于未知场景,需要增加未知场景中的新数据进行额外的学习训练,否则识别精度将会大幅下降,限制了其实用性。针对这一问题,提出了一种基于3D卷积神经网络的CSI跨场景手势识别方法,该系统通过提取与场景无关的特征,并结合3D卷积神经网络学习模型来实现跨场景手势识别,在实验中使用网络公开数据集来验证该方法,结果显示该方法对于6个不同动作手势,在已知场景中的平均识别准确率达到了86.50%,在未知场景中的平均识别准确率达到了84.67%,能够实现跨场景的手势识别。