Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning...Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.展开更多
The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecul...The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals.展开更多
The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a=...The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a= 1.41999(2)nm, b=1.43467(2)nm, c=1.694610(10)nm, α=95.7250(10)°, β=92.2110(10)°, γ=92.6060(10)°, V=3.42829(7)nm3, Z=2, Dc=2.388g·cm-3, Mr=2465.10g·mol-1, μ=2.489mm-1, F(000)=2388, R1=0.0584, wR2=0.1461, S=1.164. The heteropolyanion is a bi capped pseudo Keggin complex. CCDC: 186645.展开更多
The title complex Cu[C5H3N(CCH3=N-C6H5)2]2(PF6)2 has been synthesized by r eaction of Schiff base C5H3N(CCH3=N-C6H5)2 and cupric sulfate in toluene solut ion. The crystal structure was determined by X-ray diffraction ...The title complex Cu[C5H3N(CCH3=N-C6H5)2]2(PF6)2 has been synthesized by r eaction of Schiff base C5H3N(CCH3=N-C6H5)2 and cupric sulfate in toluene solut ion. The crystal structure was determined by X-ray diffraction method and the chemical formula weight of the complex is 1041.85. The crystal structure belongs to triclinic system with spacegroup and cell parameters: a=12.6470(10) , b=14. 123(2) , c=15.613(2);á=66.150(10)a=79.470(10)?=78.290(10)穖-3 and F(000)=1064. The final R:R1=0.0668, wR 2=0.1927; R(all data): R1=0.1133, wR2=0.2357. The Cu was coordinated by six nitrogen, at the same time the Cu formed a distorted octahedron, besides the angles and pl anes of this compound were discussed . The result of kinetics of the thermal dec omposition indicated that the first step of it is 2 series chemical reactions, t he function of machanism is f(a)=(1-a)2, and the activation energy is 144.64E/ kJ. CCDC: 180872.展开更多
基金Project (090414185) supported by the Natural Science Foundation of Anhui Province, China
文摘Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.
基金supported by the National Nature Science Foundation of China(No.20903054).
文摘The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals.
文摘The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a= 1.41999(2)nm, b=1.43467(2)nm, c=1.694610(10)nm, α=95.7250(10)°, β=92.2110(10)°, γ=92.6060(10)°, V=3.42829(7)nm3, Z=2, Dc=2.388g·cm-3, Mr=2465.10g·mol-1, μ=2.489mm-1, F(000)=2388, R1=0.0584, wR2=0.1461, S=1.164. The heteropolyanion is a bi capped pseudo Keggin complex. CCDC: 186645.
文摘The title complex Cu[C5H3N(CCH3=N-C6H5)2]2(PF6)2 has been synthesized by r eaction of Schiff base C5H3N(CCH3=N-C6H5)2 and cupric sulfate in toluene solut ion. The crystal structure was determined by X-ray diffraction method and the chemical formula weight of the complex is 1041.85. The crystal structure belongs to triclinic system with spacegroup and cell parameters: a=12.6470(10) , b=14. 123(2) , c=15.613(2);á=66.150(10)a=79.470(10)?=78.290(10)穖-3 and F(000)=1064. The final R:R1=0.0668, wR 2=0.1927; R(all data): R1=0.1133, wR2=0.2357. The Cu was coordinated by six nitrogen, at the same time the Cu formed a distorted octahedron, besides the angles and pl anes of this compound were discussed . The result of kinetics of the thermal dec omposition indicated that the first step of it is 2 series chemical reactions, t he function of machanism is f(a)=(1-a)2, and the activation energy is 144.64E/ kJ. CCDC: 180872.