The activities of RuBPC and C4 photosynthetic enzymes in ear and flag leaf blade were examined in wheat. The results showed that photosynthesis of ear was less sensitive to soil drought than that of flag leaf, and dec...The activities of RuBPC and C4 photosynthetic enzymes in ear and flag leaf blade were examined in wheat. The results showed that photosynthesis of ear was less sensitive to soil drought than that of flag leaf, and decrease of CO2 assimilation in flag leaf blade with water stress was more than that in ear. Compared with flag leaf, ear organs (awn, glume and lemma) had higher C4 enzyme activities and lower RuBPC activity. Under moderate water-stress, the increase of C4 enzyme activities was induced, and the increase was higher in ear than in flag leaf. Under severe water-stress, relatively higher C4 enzyme activities were still maintained in ear, rather than that in flag leaf. It suggests that high activities of C4 enzymes in ear may contribute to its high tolerance of photosynthesis to water-stress.展开更多
旨在探究喀斯特地区退化生态系统植被恢复树种凋落叶分解过程及其对土壤碳排放的激发效应,为选择合适的树种进行植被恢复提供数据支持。以中国林科院热带林业实验中心大青山石山树木园11种适应性强、耐干旱贫瘠的优良石山树种为研究对象...旨在探究喀斯特地区退化生态系统植被恢复树种凋落叶分解过程及其对土壤碳排放的激发效应,为选择合适的树种进行植被恢复提供数据支持。以中国林科院热带林业实验中心大青山石山树木园11种适应性强、耐干旱贫瘠的优良石山树种为研究对象,利用13C自然丰度法区分凋落叶和土壤来源CO_(2)并量化土壤激发效应,比较不同生态恢复树种凋落叶分解及其激发效应的差异,探讨凋落物分解及其激发效应与凋落物性状之间的关联。结果表明:(1)11个生态恢复树种凋落叶在碳相关化学性质(水溶性碳、半纤维素和单宁含量等)、养分含量(磷和镁含量等)及化学计量特征(碳磷比和氮磷比)等方面均表现出较高程度变异。(2)不同生态恢复树种凋落叶分解及其诱导的土壤激发效应具有极显著差异(P<0.001);在整个培养实验期间,11个生态恢复树种凋落叶平均分解了35.3%,其中海南椴分解最快,达到50%,而青冈栎分解最慢,仅分解16.5%。(3)总体上看,凋落叶处理的土壤呼吸速率(5.1 mg C kg^(-1)土壤d^(-1))是对照土壤呼吸速率(2.3 mg C kg^(-1)土壤d^(-1))的2.2倍,凋落叶添加显著促进土壤有机碳分解,平均达到37.6%;其中海南椴、割舌树和任豆凋落叶输入则抑制土壤有机碳分解(抑制程度分别为-13.2%、-6.9%和-22.5%),产生负激发效应。(4)凋落叶分解与非结构性碳(r=0.63,P=0.04)和水溶性碳(r=0.91,P<0.001)呈显著正相关,与叶干物质含量(r=0.64,P=0.03)、纤维素(r=0.62,P=0.04)和锰含量(r=-0.63,P=0.04)呈显著负相关。多元回归分析结果表明,水溶性碳、钾和钙含量相结合可以解释生态恢复树种凋落叶分解变异的98%;然而,凋落叶性状与土壤激发效应强度之间并没有显著相关性。从土壤养分归还角度考虑,喀斯特退化生态系统恢复树种可以选择光皮梾木、海南椴、顶果木和降香黄檀等凋落叶分解较快的树种,以促进土壤养分循环和植被恢复;另一方面,从土壤碳固持角度来看,海南椴、任豆和割舌树等凋落叶输入会抑制土壤有机碳分解,从而有利于提高退化生态系统土壤碳封存能力。展开更多
To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we exa...To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we examine the effect of the natural fires on the MS signal of both plants and modern soils and in particular the MS difference between C3 and C4 plant ashes and their influence on magnetic susceptibility. We also proved the influence of the different floral root systems on the MS signal of modern soils. We find that the C3 and C4 plants are different in their ability to enhance MS signal of modern soils. Increased MS signal of modern soils by C4 plants was much greater than that by C3 plants.展开更多
Carbon isotope ratios (δ 13C) of plants, litter and soil organic matter (0–5 cm, 5–10 cm and 10–20 cm) on the eastern slope of Mount Gongga were measured. The results show that δ 13C values of plants, litter and ...Carbon isotope ratios (δ 13C) of plants, litter and soil organic matter (0–5 cm, 5–10 cm and 10–20 cm) on the eastern slope of Mount Gongga were measured. The results show that δ 13C values of plants, litter and soil organic matter all decrease first and then increase with altitude, i.e. δ 13C values gradually decrease from 1200 to 2100 m a.s.l., and increase from 2100 to 4500 m a.s.l. The δ 13C altitudinal variations are related to the distribution of C3 and C4 plants on the eastern slope of Mount Gongga, because C4 plants are observed to grow only below 2100 m, while C3 plants occur at all altitudes. There are significantly positive correlations among δ 13C of vegetation, δ 13C of litter and δ 13C of soil organic matter, and litter, 0–5 cm, 5–10 cm and 10–20 cm soil organic matter are 0.56‰, 2.87‰, 3.04‰ and 3.49‰ greater in δ 13C than vegetation, respectively. Considering the influences of rising concentration of atmospheric CO2 and decreasing δ 13C of atmospheric CO2 since the industry revolution on δ 13C of plants, 1.57‰ is proposed to be the smallest correction value for reconstruction of paleovegetation using δ 13C of soil organic matter.展开更多
Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition(δ 13C) of total organic carbon(TOC) and higher plant-derived long-chain n-alkanes,with the l...Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition(δ 13C) of total organic carbon(TOC) and higher plant-derived long-chain n-alkanes,with the latter reported as weighted mean values.The two sets of δ 13C values are significantly correlated and show similar trends in spatial variation.The spatial distribution of δ 13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes.This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing conditions for C4 plants.Furthermore,δ 13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ 13C of a soil samples remains relatively constant.Our data demonstrate that in eastern China,soil δ 13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation.This work suggests that -22‰ and -32‰ are good estimated end members for the weighted mean δ 13C values of long-chain n-alkanes(C27,C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation,allowing us to reconstruct paleovegetation trends.展开更多
基金This work was supported by the State Key Basic Research and Development Plan(G1998010100)the State Natural Science Fund(30270780)the State"Tenth Five Year"Project(2001BA507A-09)of China
文摘The activities of RuBPC and C4 photosynthetic enzymes in ear and flag leaf blade were examined in wheat. The results showed that photosynthesis of ear was less sensitive to soil drought than that of flag leaf, and decrease of CO2 assimilation in flag leaf blade with water stress was more than that in ear. Compared with flag leaf, ear organs (awn, glume and lemma) had higher C4 enzyme activities and lower RuBPC activity. Under moderate water-stress, the increase of C4 enzyme activities was induced, and the increase was higher in ear than in flag leaf. Under severe water-stress, relatively higher C4 enzyme activities were still maintained in ear, rather than that in flag leaf. It suggests that high activities of C4 enzymes in ear may contribute to its high tolerance of photosynthesis to water-stress.
文摘旨在探究喀斯特地区退化生态系统植被恢复树种凋落叶分解过程及其对土壤碳排放的激发效应,为选择合适的树种进行植被恢复提供数据支持。以中国林科院热带林业实验中心大青山石山树木园11种适应性强、耐干旱贫瘠的优良石山树种为研究对象,利用13C自然丰度法区分凋落叶和土壤来源CO_(2)并量化土壤激发效应,比较不同生态恢复树种凋落叶分解及其激发效应的差异,探讨凋落物分解及其激发效应与凋落物性状之间的关联。结果表明:(1)11个生态恢复树种凋落叶在碳相关化学性质(水溶性碳、半纤维素和单宁含量等)、养分含量(磷和镁含量等)及化学计量特征(碳磷比和氮磷比)等方面均表现出较高程度变异。(2)不同生态恢复树种凋落叶分解及其诱导的土壤激发效应具有极显著差异(P<0.001);在整个培养实验期间,11个生态恢复树种凋落叶平均分解了35.3%,其中海南椴分解最快,达到50%,而青冈栎分解最慢,仅分解16.5%。(3)总体上看,凋落叶处理的土壤呼吸速率(5.1 mg C kg^(-1)土壤d^(-1))是对照土壤呼吸速率(2.3 mg C kg^(-1)土壤d^(-1))的2.2倍,凋落叶添加显著促进土壤有机碳分解,平均达到37.6%;其中海南椴、割舌树和任豆凋落叶输入则抑制土壤有机碳分解(抑制程度分别为-13.2%、-6.9%和-22.5%),产生负激发效应。(4)凋落叶分解与非结构性碳(r=0.63,P=0.04)和水溶性碳(r=0.91,P<0.001)呈显著正相关,与叶干物质含量(r=0.64,P=0.03)、纤维素(r=0.62,P=0.04)和锰含量(r=-0.63,P=0.04)呈显著负相关。多元回归分析结果表明,水溶性碳、钾和钙含量相结合可以解释生态恢复树种凋落叶分解变异的98%;然而,凋落叶性状与土壤激发效应强度之间并没有显著相关性。从土壤养分归还角度考虑,喀斯特退化生态系统恢复树种可以选择光皮梾木、海南椴、顶果木和降香黄檀等凋落叶分解较快的树种,以促进土壤养分循环和植被恢复;另一方面,从土壤碳固持角度来看,海南椴、任豆和割舌树等凋落叶输入会抑制土壤有机碳分解,从而有利于提高退化生态系统土壤碳封存能力。
基金the Nation Natural Science Foundation of China (Grant Nos.400242002 and 49894170-04), project on Formation and Evolution of Tibetan Plateau with its Environment and Resource Effect (Grant No. 1998040800) and Chinese Academy of Sciences (CAS KZ951-A1-40
文摘To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we examine the effect of the natural fires on the MS signal of both plants and modern soils and in particular the MS difference between C3 and C4 plant ashes and their influence on magnetic susceptibility. We also proved the influence of the different floral root systems on the MS signal of modern soils. We find that the C3 and C4 plants are different in their ability to enhance MS signal of modern soils. Increased MS signal of modern soils by C4 plants was much greater than that by C3 plants.
基金supported by the National Natural Science Founda-tion of China (Grant No. 40673017)
文摘Carbon isotope ratios (δ 13C) of plants, litter and soil organic matter (0–5 cm, 5–10 cm and 10–20 cm) on the eastern slope of Mount Gongga were measured. The results show that δ 13C values of plants, litter and soil organic matter all decrease first and then increase with altitude, i.e. δ 13C values gradually decrease from 1200 to 2100 m a.s.l., and increase from 2100 to 4500 m a.s.l. The δ 13C altitudinal variations are related to the distribution of C3 and C4 plants on the eastern slope of Mount Gongga, because C4 plants are observed to grow only below 2100 m, while C3 plants occur at all altitudes. There are significantly positive correlations among δ 13C of vegetation, δ 13C of litter and δ 13C of soil organic matter, and litter, 0–5 cm, 5–10 cm and 10–20 cm soil organic matter are 0.56‰, 2.87‰, 3.04‰ and 3.49‰ greater in δ 13C than vegetation, respectively. Considering the influences of rising concentration of atmospheric CO2 and decreasing δ 13C of atmospheric CO2 since the industry revolution on δ 13C of plants, 1.57‰ is proposed to be the smallest correction value for reconstruction of paleovegetation using δ 13C of soil organic matter.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No.KZCX3-SW-152)National Natural Science Foundation of China (Grant No.40331009)+1 种基金the Research Foundation of the State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences (Grant No.OGL-200604)the NSFC National Innovative Research Team Project (Grant No.40721061)
文摘Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition(δ 13C) of total organic carbon(TOC) and higher plant-derived long-chain n-alkanes,with the latter reported as weighted mean values.The two sets of δ 13C values are significantly correlated and show similar trends in spatial variation.The spatial distribution of δ 13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes.This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing conditions for C4 plants.Furthermore,δ 13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ 13C of a soil samples remains relatively constant.Our data demonstrate that in eastern China,soil δ 13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation.This work suggests that -22‰ and -32‰ are good estimated end members for the weighted mean δ 13C values of long-chain n-alkanes(C27,C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation,allowing us to reconstruct paleovegetation trends.