Erbin, a member of Leucine-rich repeat and PDZ-containing protein family, was found to inhibit TGF-β-induced epithelial-mesenchymal transition (EMT) in our previous study. However, the mechanism of Erbin in regulat...Erbin, a member of Leucine-rich repeat and PDZ-containing protein family, was found to inhibit TGF-β-induced epithelial-mesenchymal transition (EMT) in our previous study. However, the mechanism of Erbin in regulating EMT is unclear. Semaphorin protein Sema4C, with PDZ binding site at C-terminal has been recognized as a positive regulator of EMT. Here, we aimed to examine the inter- action between Erbin and Sema4C. HK2 cells were treated with TGF-β1, or transfected with Erbin and (or) Sema4C. Interaction of Erbin and Sema4C was identified by immunoprecipitation. RT-PCR was used to detect the expression of Erbin and Sema4C at mRNA level after transfection. The expression levels of Erbin, Sema4C, and markers of EMT were measured by using Western blotting or ELISA. Af- ter HK2 cells were stimulated with 10 ng/mL TGF-β1 for 72 h, the protein expression levels of Erbin and Sema4C were both up-regulated, and immunoprecipitation results showed Erbin interacted with Sema4C in HK2 cells both at endogenous and exogenous levels. Furthermore, overexpression of Sema4C suppressed E-cadherin, induced vimentin and promoted fibronectin secretion, indicating Sema4C promotes the process of EMT. However, HK2 cells overexpressing Erbin were resistant to Sema4C-induced EMT. In contrast, Erbin specific siRNA promoted EMT induced by Sema4C. Taken together, these results suggest that Erbin can interact with Sema4C, and co-expression of Erbin blocks the process of Sema4C-induced EMT.展开更多
BACKGROUND Heart diseases are the primary cause of death all over the world.Following myocardial infarction,billions of cells die,resulting in a huge loss of cardiac function.Stem cell-based therapies have appeared as...BACKGROUND Heart diseases are the primary cause of death all over the world.Following myocardial infarction,billions of cells die,resulting in a huge loss of cardiac function.Stem cell-based therapies have appeared as a new area to support heart regeneration.The transcription factors GATA binding protein 4(GATA-4)and myocyte enhancer factor 2C(MEF2C)are considered prominent factors in the development of the cardiovascular system.AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells(hUC-MSCs).METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry,and by their potential to differentiate into osteocytes and adipocytes.hUC-MSCs were transfected with GATA-4,MEF2C,and their combination to direct the differentiation.Cardiac differentiation was confirmed by semiquant itative real-time polymerase chain reaction and immunocytochemistry.RESULTS hUC-MSCs expressed specific cell surface markers CD105,CD90,CD44,and vimentin but lack the expression of CD45.The transcription factors GATA-4 and MEF2C,and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e.,GATA-4,MEF2C,NK2 homeobox 5(NKX2.5),MHC,and connexin-43,and cardiac proteins GATA-4,NKX2.5,cardiac troponin T,and connexin-43.CONCLUSION Transfection with GATA-4,MEF2C,and their combination effectively induces cardiac differentiation in hUC-MSCs.These genetically modified MSCs could be a promising treatment option for heart diseases in the future.展开更多
Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therape...Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therapeutic synergy between radiotherapy and androgen ablation treatment provides a promising strategy for improving the clinical outcome. Accordingly, the androgen deprivation-induced signaling pathway may also mediate radiosensitivity in PCa cells. The C4-2 cell line was derived from the androgen-sensitive LNCaP parent line under androgen-depleted condition and had acquired androgen-refractory characteristics. In our study, the response to radiation was evaluated in both LNCaP and C4-2. Results showed that C4-2 cells were more likely to survive from irradiation and appeared more aggressive in their resistance to radiation treatment compared with LNCaP, as measured by clonogenic assays and cell viability and cell cycle analyses. Gene expression analyses revealed that a set of genes involved in cell cycle arrest and DNA repair were differentially regulated in LNCaP and C4-2 in response to radiation, which was also consistent with the radiation-resistant property observed in C4-2 cells. These results strongly suggested that the radiation-resistant property may develop with progression of PCa to androgen- independent status. Not only can the LNCaP and C4-2 PCa progression model be applied for investigating androgen-refractory progression, but it can also be used to explore the development of radiation resistance in PCa.展开更多
In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium. Attached cells when stimulated with high potassium secreted la...In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium. Attached cells when stimulated with high potassium secreted large amount of amylase. High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation. High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel antagonists with an order of potency as follows: nifedipine > ω-agatoxin IVA > ω-conotoxin GVIA. In contrast, the L-type calcium channel antagonist nifedipine almost completely inhibited potassium-induced amylase secretion, whereas the N-type channel antagonist ω-conotoxin GVIA was without effect. The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect, but this inhibition was not significant at the level of amylase secretion. In conclusion, the AR4-2J cell line possesses different voltage-dependent calcium channels (L, P,N) with the L-type predominantly involved in depolarization induced amylase secretion.展开更多
Compound [Co 3(BTC)(HBTC)(H 2BTC)(C 2H 4O 2) 3]·3(DMF)·6(H 3O) was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The crystal structure ...Compound [Co 3(BTC)(HBTC)(H 2BTC)(C 2H 4O 2) 3]·3(DMF)·6(H 3O) was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The crystal structure was solved by direct method and refined by full-matrix least-square method. The crystal is monoclinic and belongs to space group Cc with a=2.645 3(5) nm, b= 1.670 4(3) nm, c=1\^821 6(4) nm, β=128.16(3) °, V=6.329(2) nm 3, Z=2 , D c=20.200 Mg/m 3, M r= 1 314.744, μ=10.274 mm -1, F(000) =38 226, GOF=0.99, R=0.094 1, ωR=0.257 3.展开更多
Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its ...Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its early diagnosis and treatment for RCC.microRNA(miRNA)data of M2-EVs and RCC were searched on the Gene Expression Omnibus database,followed by the prediction of the potential downstream target.Expression of target genes was measured via RT-qPCR and Western blot,respectively.M2 macrophage was obtained viaflow cytometry with M2-EVs extracted.The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed.Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes.M2-EVs induced RCC growth and metastasis.miR-342-3p showed high expression in both M2-EVs and RCC cells.M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate,invade and migrate.In RCC cells,M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L,thereby exerting tumor-promoting effects.CEP55 could be degraded by ubiquitination under the function of NEDD4L,and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway.In conclusion,M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway,strongly driving the proliferative,migratory and invasive of RCC cells.展开更多
A new heat resisting phenol-starch moulding material (PF2C4) was prepared.Its typical raw materials formulation, preparative technology and moulding technology were determined.The method of its quatity control was put...A new heat resisting phenol-starch moulding material (PF2C4) was prepared.Its typical raw materials formulation, preparative technology and moulding technology were determined.The method of its quatity control was put forward and its properties and economic advantage were analyzed. The results show that typical raw materials formulation(mass percent)of the product is phenol-starch is phenol starch resin∶hexamethylene-tetramine∶wood flour∶calcium carbonate∶magnesium oxide∶zinc stearate∶stearic acid∶Oil Aniline Black∶ultramarine=37.0∶6.4∶30.0∶24.0∶0.6∶0.6∶0.4∶0.5∶0.5.The preparative technological parameters of the product were mixed time ≥60?min, temperature of the working roller 90—100?℃, temperature of the idle roller 145—155?℃, distance of the two rollers 2.0—2.5?mm, warm-up time 4—5?min.combining batch time≥45?min.The moulding, technological parameters of the product were preheating temperature 100—110?℃, preheating time 10—15?min, moulding pressure≥25?MPa, moulding temperature 180—185?℃, moulding time 0.8—1.0?min·mm -1 , exhaust ≥3 times. The quality of the product was controlled by bright outward appearance of sheet material of moulding material and Raschig flow property 80—120?mm of moulding material.The properties of the product came up to the national standard of raw heat resisting phenol-for maldehyde material (PF2C4), specifically its heat properties (thermal deformation temperature 174?℃) and electric properties (insulating resistance 6.0×10 12 ?Ω, dielectric strength 6.7?MV·m -1 , dielectric loss tangent 0.03)surpassed greatly the national standard.It showed very good electric properties in moist environment.By comparison with raw heat resisting thermoplastic phenol-formaldehyde moulding material(PF2C4),the cost of raw materials consumption reduced by is 20.9%.展开更多
基金supported by grants from National Natural Science Foundation of China (No.81300575,No.81100485,No.30971372,and No.30800525)
文摘Erbin, a member of Leucine-rich repeat and PDZ-containing protein family, was found to inhibit TGF-β-induced epithelial-mesenchymal transition (EMT) in our previous study. However, the mechanism of Erbin in regulating EMT is unclear. Semaphorin protein Sema4C, with PDZ binding site at C-terminal has been recognized as a positive regulator of EMT. Here, we aimed to examine the inter- action between Erbin and Sema4C. HK2 cells were treated with TGF-β1, or transfected with Erbin and (or) Sema4C. Interaction of Erbin and Sema4C was identified by immunoprecipitation. RT-PCR was used to detect the expression of Erbin and Sema4C at mRNA level after transfection. The expression levels of Erbin, Sema4C, and markers of EMT were measured by using Western blotting or ELISA. Af- ter HK2 cells were stimulated with 10 ng/mL TGF-β1 for 72 h, the protein expression levels of Erbin and Sema4C were both up-regulated, and immunoprecipitation results showed Erbin interacted with Sema4C in HK2 cells both at endogenous and exogenous levels. Furthermore, overexpression of Sema4C suppressed E-cadherin, induced vimentin and promoted fibronectin secretion, indicating Sema4C promotes the process of EMT. However, HK2 cells overexpressing Erbin were resistant to Sema4C-induced EMT. In contrast, Erbin specific siRNA promoted EMT induced by Sema4C. Taken together, these results suggest that Erbin can interact with Sema4C, and co-expression of Erbin blocks the process of Sema4C-induced EMT.
基金Supported by the Higher Education Commission(HEC),Pakistan Scholarship for Ph.D.Studies to Razzaq SS,No.520-148390-2BS6-011.
文摘BACKGROUND Heart diseases are the primary cause of death all over the world.Following myocardial infarction,billions of cells die,resulting in a huge loss of cardiac function.Stem cell-based therapies have appeared as a new area to support heart regeneration.The transcription factors GATA binding protein 4(GATA-4)and myocyte enhancer factor 2C(MEF2C)are considered prominent factors in the development of the cardiovascular system.AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells(hUC-MSCs).METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry,and by their potential to differentiate into osteocytes and adipocytes.hUC-MSCs were transfected with GATA-4,MEF2C,and their combination to direct the differentiation.Cardiac differentiation was confirmed by semiquant itative real-time polymerase chain reaction and immunocytochemistry.RESULTS hUC-MSCs expressed specific cell surface markers CD105,CD90,CD44,and vimentin but lack the expression of CD45.The transcription factors GATA-4 and MEF2C,and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e.,GATA-4,MEF2C,NK2 homeobox 5(NKX2.5),MHC,and connexin-43,and cardiac proteins GATA-4,NKX2.5,cardiac troponin T,and connexin-43.CONCLUSION Transfection with GATA-4,MEF2C,and their combination effectively induces cardiac differentiation in hUC-MSCs.These genetically modified MSCs could be a promising treatment option for heart diseases in the future.
基金This work was supported by grants fi'om National "863" Research Program Foundation (No. 2008AA02Z123), Key Project for drug discovery and development in China (No. 2009ZX09501-027), and National Natural Science Foundation of China (No. 30770834 and 30870961).
文摘Radiation therapy is a relatively effective therapeutic method for localized prostate cancer (PCa) patients. However, radioresistance occurs in nearly 30% of patients treated with potentially curative doses. Therapeutic synergy between radiotherapy and androgen ablation treatment provides a promising strategy for improving the clinical outcome. Accordingly, the androgen deprivation-induced signaling pathway may also mediate radiosensitivity in PCa cells. The C4-2 cell line was derived from the androgen-sensitive LNCaP parent line under androgen-depleted condition and had acquired androgen-refractory characteristics. In our study, the response to radiation was evaluated in both LNCaP and C4-2. Results showed that C4-2 cells were more likely to survive from irradiation and appeared more aggressive in their resistance to radiation treatment compared with LNCaP, as measured by clonogenic assays and cell viability and cell cycle analyses. Gene expression analyses revealed that a set of genes involved in cell cycle arrest and DNA repair were differentially regulated in LNCaP and C4-2 in response to radiation, which was also consistent with the radiation-resistant property observed in C4-2 cells. These results strongly suggested that the radiation-resistant property may develop with progression of PCa to androgen- independent status. Not only can the LNCaP and C4-2 PCa progression model be applied for investigating androgen-refractory progression, but it can also be used to explore the development of radiation resistance in PCa.
文摘In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium. Attached cells when stimulated with high potassium secreted large amount of amylase. High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation. High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel antagonists with an order of potency as follows: nifedipine > ω-agatoxin IVA > ω-conotoxin GVIA. In contrast, the L-type calcium channel antagonist nifedipine almost completely inhibited potassium-induced amylase secretion, whereas the N-type channel antagonist ω-conotoxin GVIA was without effect. The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect, but this inhibition was not significant at the level of amylase secretion. In conclusion, the AR4-2J cell line possesses different voltage-dependent calcium channels (L, P,N) with the L-type predominantly involved in depolarization induced amylase secretion.
文摘Compound [Co 3(BTC)(HBTC)(H 2BTC)(C 2H 4O 2) 3]·3(DMF)·6(H 3O) was synthesized under mild conditions and its crystal structure was determined by using single crystal X-ray diffraction. The crystal structure was solved by direct method and refined by full-matrix least-square method. The crystal is monoclinic and belongs to space group Cc with a=2.645 3(5) nm, b= 1.670 4(3) nm, c=1\^821 6(4) nm, β=128.16(3) °, V=6.329(2) nm 3, Z=2 , D c=20.200 Mg/m 3, M r= 1 314.744, μ=10.274 mm -1, F(000) =38 226, GOF=0.99, R=0.094 1, ωR=0.257 3.
基金supported by the Science and Technology Department of Sichuan Province(2015SZ0117,2019YJ0701,and 2021YJ0239).
文摘Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its early diagnosis and treatment for RCC.microRNA(miRNA)data of M2-EVs and RCC were searched on the Gene Expression Omnibus database,followed by the prediction of the potential downstream target.Expression of target genes was measured via RT-qPCR and Western blot,respectively.M2 macrophage was obtained viaflow cytometry with M2-EVs extracted.The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed.Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes.M2-EVs induced RCC growth and metastasis.miR-342-3p showed high expression in both M2-EVs and RCC cells.M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate,invade and migrate.In RCC cells,M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L,thereby exerting tumor-promoting effects.CEP55 could be degraded by ubiquitination under the function of NEDD4L,and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway.In conclusion,M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway,strongly driving the proliferative,migratory and invasive of RCC cells.
文摘A new heat resisting phenol-starch moulding material (PF2C4) was prepared.Its typical raw materials formulation, preparative technology and moulding technology were determined.The method of its quatity control was put forward and its properties and economic advantage were analyzed. The results show that typical raw materials formulation(mass percent)of the product is phenol-starch is phenol starch resin∶hexamethylene-tetramine∶wood flour∶calcium carbonate∶magnesium oxide∶zinc stearate∶stearic acid∶Oil Aniline Black∶ultramarine=37.0∶6.4∶30.0∶24.0∶0.6∶0.6∶0.4∶0.5∶0.5.The preparative technological parameters of the product were mixed time ≥60?min, temperature of the working roller 90—100?℃, temperature of the idle roller 145—155?℃, distance of the two rollers 2.0—2.5?mm, warm-up time 4—5?min.combining batch time≥45?min.The moulding, technological parameters of the product were preheating temperature 100—110?℃, preheating time 10—15?min, moulding pressure≥25?MPa, moulding temperature 180—185?℃, moulding time 0.8—1.0?min·mm -1 , exhaust ≥3 times. The quality of the product was controlled by bright outward appearance of sheet material of moulding material and Raschig flow property 80—120?mm of moulding material.The properties of the product came up to the national standard of raw heat resisting phenol-for maldehyde material (PF2C4), specifically its heat properties (thermal deformation temperature 174?℃) and electric properties (insulating resistance 6.0×10 12 ?Ω, dielectric strength 6.7?MV·m -1 , dielectric loss tangent 0.03)surpassed greatly the national standard.It showed very good electric properties in moist environment.By comparison with raw heat resisting thermoplastic phenol-formaldehyde moulding material(PF2C4),the cost of raw materials consumption reduced by is 20.9%.