针对有噪声的高维数据引起决策树预测准确率下降的问题,利用容噪主成分分析(Noise-free Principal Component Anlysis,NFPCA)算法思想对C4.5算法改进而形成NFPCA-in-C4.5算法。该算法一方面将高维数据噪声控制问题转化为拟合数据特征与...针对有噪声的高维数据引起决策树预测准确率下降的问题,利用容噪主成分分析(Noise-free Principal Component Anlysis,NFPCA)算法思想对C4.5算法改进而形成NFPCA-in-C4.5算法。该算法一方面将高维数据噪声控制问题转化为拟合数据特征与控制平滑度相结合的最优化问题,从而获得主成分空间;另一方面在决策树自顶向下构建新节点的过程中,再将主成分空间恢复到原始数据空间来避免降维过程中属性特征信息永久消失。实验结果表明NFPCA-in-C4.5算法兼具降维和容噪功能,避免了降维中由特征信息损失和噪声残留造成的预测模型准确率大幅降低的问题。展开更多
文摘针对有噪声的高维数据引起决策树预测准确率下降的问题,利用容噪主成分分析(Noise-free Principal Component Anlysis,NFPCA)算法思想对C4.5算法改进而形成NFPCA-in-C4.5算法。该算法一方面将高维数据噪声控制问题转化为拟合数据特征与控制平滑度相结合的最优化问题,从而获得主成分空间;另一方面在决策树自顶向下构建新节点的过程中,再将主成分空间恢复到原始数据空间来避免降维过程中属性特征信息永久消失。实验结果表明NFPCA-in-C4.5算法兼具降维和容噪功能,避免了降维中由特征信息损失和噪声残留造成的预测模型准确率大幅降低的问题。