期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management 被引量:18
1
作者 Zizheng Guo Yu Shi +2 位作者 Faming Huang Xuanmei Fan Jinsong Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期243-261,共19页
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres... Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices. 展开更多
关键词 Landslide susceptibility Frequency ratio c5.0 decision tree K-means cluster Classification Risk management
下载PDF
FPGA-Based Network Traffic Security: Design and Implementation Using C5.0 Decision Tree Classifier 被引量:2
2
作者 Tarek Salah Sobh Mohamed Ibrahiem Amer 《Journal of Electronic Science and Technology》 CAS 2013年第4期393-403,共11页
In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of man... In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of many IDSs: hardware based from implementation point of view, network based from system type point of view, and anomaly detection from detection approach point of view. In addition, it can detect most of network attacks, such as denial of services (DOS), leakage, etc. from detection behavior point of view and can detect both internal and external intruders from intruder type point of view. Gathering these features in one IDS system gives lots of strengths and advantages of the work. The system is implemented by using field programmable gate array (FPGA), giving a more advantages to the system. A C5.0 decision tree classifier is used as inference engine to the system and gives a high detection ratio of 99.93%. 展开更多
关键词 c5.0 decision tree field programm-able gate array network monitoring network security.
下载PDF
Data mining and well logging interpretation: application to a conglomerate reservoir 被引量:8
3
作者 石宁 李洪奇 罗伟平 《Applied Geophysics》 SCIE CSCD 2015年第2期263-272,276,共11页
Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play... Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs. 展开更多
关键词 Data mining well logging interpretation independent component analysis branch-and-bound algorithm c5.0 decision tree
下载PDF
基于决策树的矿产资源潜力制图模型 被引量:5
4
作者 戴黎明 陈永良 +2 位作者 周永刚 刘博 楼达 《地球物理学进展》 CSCD 北大核心 2009年第3期1081-1087,共7页
文中提出了一种基于决策树的矿产资源潜力制图模型.应用该模型生成矿产资源潜力分布图分三步完成:第一步,以找矿标志的空间分布图和已知矿点空间分布图为依据,提取训练样本;第二步,根据训练样本构建决策树矿产资源潜力制图模型;第三步,... 文中提出了一种基于决策树的矿产资源潜力制图模型.应用该模型生成矿产资源潜力分布图分三步完成:第一步,以找矿标志的空间分布图和已知矿点空间分布图为依据,提取训练样本;第二步,根据训练样本构建决策树矿产资源潜力制图模型;第三步,生成矿产资源潜力分布图.本文以新疆北部阿尔泰多金属成矿带为研究区,比较了该模型与合成有矿可信度等模型的找矿靶区圈定结果.两种模型的靶区圈定结果基本相同,证明了决策树矿产资源潜力制图模型的有效性. 展开更多
关键词 决策树模型 合成有矿可信度模型 矿产资源潜力制图
下载PDF
基于不平衡数据的公司破产预测研究 被引量:3
5
作者 周文泳 冯丽霞 段春艳 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期283-290,共8页
整合创新数据预处理技术与集成算法利用不平衡数据探讨了公司破产预测问题。首先,运用冗余信息处理方法、不同抽样方法等对不平衡数据进行预处理。其次,以5.0分类器(Classifier 5.0,C5.0)决策树和单隐层前馈神经网络作为基分类器,分别... 整合创新数据预处理技术与集成算法利用不平衡数据探讨了公司破产预测问题。首先,运用冗余信息处理方法、不同抽样方法等对不平衡数据进行预处理。其次,以5.0分类器(Classifier 5.0,C5.0)决策树和单隐层前馈神经网络作为基分类器,分别与三类重抽样数据预处理技术结合,择出最优抽样法。再次,结合自助汇聚法提升分类效果,并运用十折交叉验证的受试者操作特征曲线的下方面积进行评价,对比了两基分类器的集成模型。最后,运用加利福尼亚大学尔湾分校数据库中一万多家波兰制造业公司的实际数据进行实验验证。实验结果表明:欠抽样或人工少数类过采样法与神经网络结合的集成模型分类效果最优,为企业实施破产预测提供积极支撑。 展开更多
关键词 二元分类 不平衡数据 神经网络 c5.0决策树 集成方法
下载PDF
面向乳腺肿瘤的诊前问答系统决策模型构建研究
6
作者 王世文 李一凡 +1 位作者 郑群 曹旭晨 《医学信息学杂志》 CAS 2023年第8期54-59,65,共7页
目的/意义运用决策树分类模型模拟专家问诊思路,预测潜在或已有乳腺肿瘤患者的疾病风险。方法/过程采用C 4.5经典分类算法和悲观剪枝法,对调研收集的病例数据进行患者预问诊的结果预测。结果/结论生成一棵以“术后化疗or放疗在院是否结... 目的/意义运用决策树分类模型模拟专家问诊思路,预测潜在或已有乳腺肿瘤患者的疾病风险。方法/过程采用C 4.5经典分类算法和悲观剪枝法,对调研收集的病例数据进行患者预问诊的结果预测。结果/结论生成一棵以“术后化疗or放疗在院是否结束”为根节点、拥有76个叶子节点的C 4.5决策树,预测准确率达95%,并根据分类标签划分为3个风险等级。 展开更多
关键词 乳腺肿瘤 C 4.5算法 决策树 模型构建
下载PDF
家用血液检测服务系统中诊断与预测算法的研究 被引量:1
7
作者 傅成杰 闫维新 赵言正 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第5期145-150,209,共7页
为了准确地获得C反应蛋白(C-reactive protein,CRP)的浓度,研制了一种家用血液检测服务系统,并设计了诊断与预测算法。诊断算法采用以决策树模型为基础的病情诊断算法,预测算法采用以灰色预测模型为基础的病情预测算法。两种算法的实验... 为了准确地获得C反应蛋白(C-reactive protein,CRP)的浓度,研制了一种家用血液检测服务系统,并设计了诊断与预测算法。诊断算法采用以决策树模型为基础的病情诊断算法,预测算法采用以灰色预测模型为基础的病情预测算法。两种算法的实验结果表明:病情诊断算法的测试集准确率为88.45%,符合诊断要求;病情预测算法的小误差概率P>0.95,拟合效果较好。该研究可为辅助心脑血管疾病的医学治疗提供参考。 展开更多
关键词 C反应蛋白 决策树模型 灰色预测模型 心脑血管疾病
下载PDF
Study on the Grouping of Patients with Chronic Infectious Diseases Based on Data Mining
8
作者 Min Li 《Journal of Biosciences and Medicines》 2019年第11期119-135,共17页
Objective: According to RFM model theory of customer relationship management, data mining technology was used to group the chronic infectious disease patients to explore the effect of customer segmentation on the mana... Objective: According to RFM model theory of customer relationship management, data mining technology was used to group the chronic infectious disease patients to explore the effect of customer segmentation on the management of patients with different characteristics. Methods: 170,246 outpatient data was extracted from the hospital management information system (HIS) during January 2016 to July 2016, 43,448 data was formed after the data cleaning. K-Means clustering algorithm was used to classify patients with chronic infectious diseases, and then C5.0 decision tree algorithm was used to predict the situation of patients with chronic infectious diseases. Results: Male patients accounted for 58.7%, patients living in Shanghai accounted for 85.6%. The average age of patients is 45.88 years old, the high incidence age is 25 to 65 years old. Patients was gathered into three categories: 1) Clusters 1—Important patients (4786 people, 11.72%, R = 2.89, F = 11.72, M = 84,302.95);2) Clustering 2—Major patients (23,103, 53.2%, R = 5.22, F = 3.45, M = 9146.39);3) Cluster 3—Potential patients (15,559 people, 35.8%, R = 19.77, F = 1.55, M = 1739.09). C5.0 decision tree algorithm was used to predict the treatment situation of patients with chronic infectious diseases, the final treatment time (weeks) is an important predictor, the accuracy rate is 99.94% verified by the confusion model. Conclusion: Medical institutions should strengthen the adherence education for patients with chronic infectious diseases, establish the chronic infectious diseases and customer relationship management database, take the initiative to help them improve treatment adherence. Chinese governments at all levels should speed up the construction of hospital information, establish the chronic infectious disease database, strengthen the blocking of mother-to-child transmission, to effectively curb chronic infectious diseases, reduce disease burden and mortality. 展开更多
关键词 Data Mining K-Means Clustering ALGORITHM c5.0 decision tree ALGORITHM Customer Relationship Management PATIENTS with CHRONIC INFECTIOUS Disease
下载PDF
C 5.0决策树对早期胃癌风险筛查研究 被引量:3
9
作者 刘迷迷 刘永佳 +3 位作者 温丽 蔡巧 李丽婷 蔡永铭 《中华肿瘤防治杂志》 CAS 北大核心 2018年第16期1131-1135,共5页
目的 C 5.0算法改进C 4.5算法以提高分类效率和准确性,越来越广泛地应用于处理分类问题。本研究拟根据患者问卷调查和血清学检查等资料,利用C 5.0决策树算法筛查早期胃癌风险,筛选对早期胃癌风险筛查影响较大的因素,进而辅助临床提高早... 目的 C 5.0算法改进C 4.5算法以提高分类效率和准确性,越来越广泛地应用于处理分类问题。本研究拟根据患者问卷调查和血清学检查等资料,利用C 5.0决策树算法筛查早期胃癌风险,筛选对早期胃癌风险筛查影响较大的因素,进而辅助临床提高早期胃癌的诊断筛查。方法资料来自与广东药科大学附属第一医院的合作项目"基于云计算的早期胃癌筛查创新平台",对广东省6个市近30家医院消化内科就诊的618例胃病患者进行问卷调查,并收集其血清学检查和内镜检查及病理活组织检查资料。根据内镜检查和病理活组织检查结果将患者分为早期胃癌低危、中危及高危3类,用合成少数过采样技术(synthetic minority oversampling technique,SMOTE)方法处理样本分类不平衡问题,然后根据C 5.0算法建立早期胃癌风险筛查的决策树模型。结果产生1棵深度为11、共33个叶子节点的C 5.0决策树模型,对应有33条易于理解的分类规则,根据这些分类规则可快速评估患者的早期胃癌风险类型。建立的C 5.0决策树模型有较高的准确率,达73.28%,且增益图中曲线上凸明显,接近理想曲线,能较好地对早期胃癌风险进行分类预测。决策树模型计算各指标对早期胃癌风险预测的重要性,筛选出15个对早期胃癌风险筛查影响较大的因素,其中影响最大的因素是幽门螺旋杆菌(helicobacter pylori,Hp)抗体。结论基于患者问卷调查和血清学检查构建的C 5.0决策树模型对早期胃癌风险的预测效果较好,选出对早期胃癌风险筛查影响较大的因素,可辅助临床早期胃癌风险筛查。 展开更多
关键词 早期胃癌 C 5.0算法 决策树 风险筛查
原文传递
男男同性性行为人群丙型肝炎病毒感染高风险行为评价工具构建研究 被引量:1
10
作者 潘玲 汤杨 +2 位作者 米国栋 于飞 庞琳 《中国预防医学杂志》 CAS CSCD 北大核心 2021年第3期176-180,共5页
目的构建男男同性性行为人群(men who have sex with men,MSM)丙型肝炎病毒(hepatitis C virus,HCV)感染高风险行为评价工具。方法本研究组首先开发HCV感染高风险行为评价工具,2019年12月20日—2020年1月14日利用社交软件平台,通过在线... 目的构建男男同性性行为人群(men who have sex with men,MSM)丙型肝炎病毒(hepatitis C virus,HCV)感染高风险行为评价工具。方法本研究组首先开发HCV感染高风险行为评价工具,2019年12月20日—2020年1月14日利用社交软件平台,通过在线调查收集目标人群相关信息,对该工具进行评估,采用决策树模型进行数据分析。结果HCV感染高风险行为评价工具包含的6个条目并全部纳入树模型,树模型包括5层,27个节点,模型Risk估计量为0.085,模型预测正确率为91.52%,树模型索引图和收益图显示模型拟合良好。重要性评价结果显示,对MSM人群HCV感染风险影响由大至小的条目依次为:HIV结果、毒品使用、性病或相关症状、安全套使用、群交和创伤性操作。结论本研究开发的HCV感染高风险行为评价工具简单、易操作,可用于评价MSM人群的HCV感染高风险行为,为精准行为干预提供科学依据。 展开更多
关键词 男男同性性行为人群 丙型肝炎 高风险行为评价 决策树
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部