The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene ...The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene assemblies on macrocycle-modified surfaces were investigated using scanning tunneling microscopy (STM) in combination with theoretical calculations. The results revealed that an up-assembly of C70-fullerene adlayers was successfully formed on top of the bottom macrocycle arrays. Density functional theory (DFT) calculations confirmed that the macrocycle networks along with the co-adsorbed solvent 1-phenyloctane served as a selective template for trapping C70-fullerene molecules in the spectral sites and acted as a support for the C70-fullerene molecules. The periodical distribution of the C70-fullerene molecules should facilitate understanding of the strong dependence of the arrangement of C70-fullerene upon the specific interactions (apart from spatial recognition) derived from modification of the sub-monolayers.展开更多
基金This work was supported by the National Basic Research Program of China (Nos. 2016YFA0200700, 2013CB934200, and 2012CB933001) and the National Natural Science Foundation of China (No. 21472029).
文摘The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene assemblies on macrocycle-modified surfaces were investigated using scanning tunneling microscopy (STM) in combination with theoretical calculations. The results revealed that an up-assembly of C70-fullerene adlayers was successfully formed on top of the bottom macrocycle arrays. Density functional theory (DFT) calculations confirmed that the macrocycle networks along with the co-adsorbed solvent 1-phenyloctane served as a selective template for trapping C70-fullerene molecules in the spectral sites and acted as a support for the C70-fullerene molecules. The periodical distribution of the C70-fullerene molecules should facilitate understanding of the strong dependence of the arrangement of C70-fullerene upon the specific interactions (apart from spatial recognition) derived from modification of the sub-monolayers.