The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AMI, INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene st...The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AMI, INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene structures, where three -CH2 groups are added to the 6/6 bonds located at the same hexagon passed by the shortest axis of C78 (C2v). Compared with that of C78 (C2v), the first absorption in the electronic spectrum of C78(CH2)3 (A) iS blue-shifted because of its wider LUMO-HOMO energy gap. While the IR frequencies of the C-C bonds on the carbon cage are red-shifted owing to the formation of annulene structures and the extension of the conjugated system. The chemical shifts of the carbon atoms in 13C NMR spectra are moved upfield upon the addition.展开更多
Eighteen possible isomers of C78(CH2)2 weTe investigated by the INDO method. It was indicated that the most stable isomer was 42,43,62,63-C78(CH2)2, where the -CH2 groups were added to the 6/6 bonds located at the...Eighteen possible isomers of C78(CH2)2 weTe investigated by the INDO method. It was indicated that the most stable isomer was 42,43,62,63-C78(CH2)2, where the -CH2 groups were added to the 6/6 bonds located at the same hexagon passed by the longest axis of C78 (C2v), to form cyclopropane structures. Based on the most stable four geometries of C78(CH2)2 optimized at B3LYP/3-21G level, the first absorptions in the electronic spectra calculated with the INDO/CIS method and the IR frequencies of the C-C bonds on the carbon cage computed using the AM1 method were blue-shifted compared with those of C78 (C2v) because of the bigger LUMO-HOMO energy gap and the less conjugated carbon cage after the addition. The chemical shifts of ^13C NMR for the carbon atoms on the added bonds calculated at B3LYP/3-21G level were moved upfield thanks to the conversion from sp^2-C to sp^3-C.展开更多
文摘The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AMI, INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene structures, where three -CH2 groups are added to the 6/6 bonds located at the same hexagon passed by the shortest axis of C78 (C2v). Compared with that of C78 (C2v), the first absorption in the electronic spectrum of C78(CH2)3 (A) iS blue-shifted because of its wider LUMO-HOMO energy gap. While the IR frequencies of the C-C bonds on the carbon cage are red-shifted owing to the formation of annulene structures and the extension of the conjugated system. The chemical shifts of the carbon atoms in 13C NMR spectra are moved upfield upon the addition.
文摘Eighteen possible isomers of C78(CH2)2 weTe investigated by the INDO method. It was indicated that the most stable isomer was 42,43,62,63-C78(CH2)2, where the -CH2 groups were added to the 6/6 bonds located at the same hexagon passed by the longest axis of C78 (C2v), to form cyclopropane structures. Based on the most stable four geometries of C78(CH2)2 optimized at B3LYP/3-21G level, the first absorptions in the electronic spectra calculated with the INDO/CIS method and the IR frequencies of the C-C bonds on the carbon cage computed using the AM1 method were blue-shifted compared with those of C78 (C2v) because of the bigger LUMO-HOMO energy gap and the less conjugated carbon cage after the addition. The chemical shifts of ^13C NMR for the carbon atoms on the added bonds calculated at B3LYP/3-21G level were moved upfield thanks to the conversion from sp^2-C to sp^3-C.