期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于小目标类别注意力机制与特征融合的AF-ICNet非结构化场景语义分割方法 被引量:5
1
作者 艾青林 张俊瑞 吴飞青 《光子学报》 EI CAS CSCD 北大核心 2023年第1期181-194,共14页
针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,... 针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,建立通道信息和空间位置信息以增强网络对非结构化道路小目标类别语义特征的提取能力。针对类别分布不均衡问题,改进权重交叉熵损失函数。利用AF-ICNet模型对Cityscapes与IDD数据集进行训练,在Cityscapes测试图像中分割的MIoU达到了71.5%,在IDD测试图像中分割的MIoU达到了62.5%。搭建实验测试系统进行实景测试,测试结果表明,AF-ICNet有效提升了非结构化道路及小目标类别的分割精度,并满足测试的实时性要求。 展开更多
关键词 小目标类别语义分割 AF-ICNet ca注意力机制 空洞空间卷积池化金字塔 损失函数
下载PDF
一种基于通道注意力机制的交通监控视频超分辨率算法
2
作者 林哲显 《上海船舶运输科学研究所学报》 2024年第1期66-72,共7页
为提升交通监控视频的显示质量,进而提高监控视频车牌识别成功率,提出一种基于通道注意力机制(Channel-wise Attention,CA)和BasicVSR模型的监控视频超分辨率模型。在BasicVSR模型中引入CA,使模型能学习不同通道之间的非线性依赖关系,... 为提升交通监控视频的显示质量,进而提高监控视频车牌识别成功率,提出一种基于通道注意力机制(Channel-wise Attention,CA)和BasicVSR模型的监控视频超分辨率模型。在BasicVSR模型中引入CA,使模型能学习不同通道之间的非线性依赖关系,从而有效提升监控视频超分辨率图像的质量。在某交通监控场景下开展车牌识别试验,对该CA-BasicVSR模型的有效性进行验证,结果表明:在交通监控画面还原任务中,该模型对画面还原的峰值信噪比相比EDVR-L模型和BasicVSR模型能分别提高约1.3 dB和0.3 dB;在车牌识别任务中,使用该模型处理的交通监控视频画面作为输入,相比原始低分辨率的视频画面,能提高车牌识别的成功率。 展开更多
关键词 视频超分辨率 BasicVSR模型 通道注意力机制(ca) 车牌识别
下载PDF
YOLOv5-CCE:一种基于CA和EIoU的目标检测算法
3
作者 王军 黄博文 蔡景贵 《火力与指挥控制》 CSCD 北大核心 2024年第9期90-96,103,共8页
为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特... 为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特征的提取能力;其次为提高回归精度,提出一种基于Focal EIoU Loss改进的Focal CEIoU Loss。实验结果表明,在PASCAL VOC 2007+2012数据集上,YOLOv5-CCE模型在参数量和计算量基本保持不变的情况下,相较于原模型mAP@0.5、mAP@0.5:0.95和准确率分别提升了1.4%、1.3%和3.7%,因此,YOLOv5-CCE模型可以更好地适应复杂环境下的目标检测任务。 展开更多
关键词 YOLOv5算法 EIoU Focal Loss ca注意力机制 目标检测
下载PDF
一种改进YOLOv7-GCA的车型快速识别方法
4
作者 斯洪云 苏盈盈 +2 位作者 邓圆圆 阎垒 杨浩军 《重庆科技学院学报(自然科学版)》 CAS 2024年第3期87-92,共6页
针对道路车流量大、车型识别速度慢等问题,提出了一种改进YOLOv7-GCA的车型快速识别方法。首先,采用参数量更小、检测速度更快的轻量化卷积GhostConv替换网络中的普通卷积Conv,以提高车型识别速度;其次,为了保证模型的识别精度,在进入... 针对道路车流量大、车型识别速度慢等问题,提出了一种改进YOLOv7-GCA的车型快速识别方法。首先,采用参数量更小、检测速度更快的轻量化卷积GhostConv替换网络中的普通卷积Conv,以提高车型识别速度;其次,为了保证模型的识别精度,在进入颈部前引入CA注意力机制模块。实验结果表明,YOLOv7-GCA模型在保证识别精度的前提下,减少了模型的参数量和复杂度,提高了车型识别速度。 展开更多
关键词 YOLOv7 轻量化 GhostConv ca注意力机制
下载PDF
基于Fire-MCANet的火焰检测模型
5
作者 祝巧巧 严云洋 +3 位作者 冷志超 董可 叶翔 王盘龙 《软件工程》 2024年第4期38-42,共5页
针对火焰检测参数量和计算量较大及准确度较低的问题,提出一种基于Fire-MCANet(Fire-Max Convolution Activate Networks)的火焰检测模型。该模型首先构建一种MCA(Max Convolution Activate)模块,使用大卷积核获取感受野,提高特征提取... 针对火焰检测参数量和计算量较大及准确度较低的问题,提出一种基于Fire-MCANet(Fire-Max Convolution Activate Networks)的火焰检测模型。该模型首先构建一种MCA(Max Convolution Activate)模块,使用大卷积核获取感受野,提高特征提取的能力;其次构建主干网络MCANet Block,在提升感受野的同时,降低模型的参数量和计算量;最后引入CA(Coordinate Attention)注意力机制获取火焰的位置信息。实验结果表明,基于Fire-MCANet的火焰模型的检测准确率达到95.75%,计算量仅有2.13 GMac;其网络模型的结构比ConvNeXt网络更加轻量化,检测效果也更好。 展开更多
关键词 火焰检测 深度学习 ca注意力机制 特征提取
下载PDF
改进YOLOv7-tiny的无人机目标检测算法 被引量:3
6
作者 杨永刚 谢睿夫 龚泽川 《计算机工程与应用》 CSCD 北大核心 2024年第6期121-129,共9页
针对无人机视角下小目标难以检测、目标密集和环境复杂导致漏检概率增加的问题,提出一种改进YOLOv7-tiny的无人机目标检测算法。在原主干网络的基础上增加一个并行网络,加强主干网络对特征图信息的提取能力;增加细小目标采样尺度并改进... 针对无人机视角下小目标难以检测、目标密集和环境复杂导致漏检概率增加的问题,提出一种改进YOLOv7-tiny的无人机目标检测算法。在原主干网络的基础上增加一个并行网络,加强主干网络对特征图信息的提取能力;增加细小目标采样尺度并改进FPN结构,使主干网络输出的特征图可以用于后续上采样和下采样当中,提高网络精度;加入CA注意力机制,优化主干网络输出特征图,减少特征信息损失;使用WIoU损失函数计算定位损失,增强网络对小目标的检测能力。实验结果表明,相较于原算法,改进YOLOv7-tiny算法的准确率和召回率分别提升了2.8和2.7个百分点,mAP@0.5和mAP@0.5:0.95分别提升了3.8和3.2个百分点,有效提高了算法的检测精度。 展开更多
关键词 无人机 YOLOv7-tiny 目标检测 ca注意力机制 损失函数
下载PDF
基于改进YOLOv5的皮革抓取点识别及定位 被引量:3
7
作者 金光 任工昌 +1 位作者 桓源 洪杰 《皮革科学与工程》 CAS 北大核心 2024年第1期32-40,共9页
为实现机器人对皮革抓取点的精确定位,文章通过改进YOLOv5算法,引入coordinate attention注意力机制到Backbone层中,用Focal-EIOU Loss对CIOU Loss进行替换来设置不同梯度,从而实现了对皮革抓取点快速精准的识别和定位。利用目标边界框... 为实现机器人对皮革抓取点的精确定位,文章通过改进YOLOv5算法,引入coordinate attention注意力机制到Backbone层中,用Focal-EIOU Loss对CIOU Loss进行替换来设置不同梯度,从而实现了对皮革抓取点快速精准的识别和定位。利用目标边界框回归公式获取皮革抓点的定位坐标,经过坐标系转换获得待抓取点的三维坐标,采用Intel RealSense D435i深度相机对皮革抓取点进行定位实验。实验结果表明:与Faster R-CNN算法和原始YOLOv5算法对比,识别实验中改进YOLOv5算法的准确率分别提升了6.9%和2.63%,召回率分别提升了8.39%和2.63%,mAP分别提升了8.13%和0.21%;定位实验中改进YOLOv5算法的误差平均值分别下降了0.033 m和0.007 m,误差比平均值分别下降了2.233%和0.476%。 展开更多
关键词 皮革 抓取点定位 机器视觉 YOLOv5 ca注意力机制
下载PDF
基于改进YOLOv5s的输电线路防外力破坏行为检测识别 被引量:1
8
作者 郑良成 曹雪虹 +2 位作者 焦良葆 高阳 王彦生 《计算机测量与控制》 2024年第2期42-49,共8页
电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进... 电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进行去雾处理,提升图片对比度;针对检测目标距离较远的问题,在YOLOv5s网络的基础上添加CA注意力机制,提升了模型对目标的定位能力;将原网络中的最邻近差值采样方式替换为轻量级通用上采样算子CARAFE,更好地捕捉特征图的同时引入较小的参数量;最后在网络的特征融合层,使用具有通道混洗思想的GSConv卷积模块代替标准卷积模块,减少模型参数量,再利用slim_neck特征融合结构,强化目标关注度,达到减少模型参数量同时提升检测精度的效果;实验结果表明:改进后的YOLOv5s网络,mAP提升了4.4%,参数量减少了3.4%,权重模型内存减小了2.7%,证明了算法的有效性。 展开更多
关键词 目标检测 外力破坏 YOLOv5s ca注意力 caRAFE GSConv_slimneck
下载PDF
基于YOLOv5s室内目标检测轻量化改进算法研究 被引量:5
9
作者 牛鑫宇 毛鹏军 +1 位作者 段云涛 娄晓恒 《计算机工程与应用》 CSCD 北大核心 2024年第3期109-118,共10页
针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征... 针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征提取网络,并且在改进的主干网络基础上采用CA注意力机制,同时在颈部网络中采用GSConv和VOV-GSCSP模块。最后引入边框回归损失函数EIOU加快网络收敛。研究结果表明,改进后的目标检测算法,模型计算量减少了68.75%,模型参数量减少了62.2%,权重文件减少了59.7%,平均精确率mAP均值为0.653,改进后的目标检测模型能够在保证轻量化的同时保证检测精度。 展开更多
关键词 YOLOv5s 轻量化 ShuffleNetv2网络 ca注意力机制 GSConv模块 VOV-GSCSP模块 EIOU损失函数
下载PDF
基于改进YOLOv5的条烟识别研究
10
作者 刘云飞 杨旭东 孙栋 《包装工程》 CAS 北大核心 2024年第5期144-150,共7页
目的针对当下烟草物流中心条烟分拣机及人工分拣时会产生错烟等问题。从兼顾实时性、识别精度出发,基于YOLOv5s算法提出一种收敛速度更快、准确率更高的条烟识别模型。方法首先在YOLOv5s网络架构中融入CA注意力模块来更好地提取特征,提... 目的针对当下烟草物流中心条烟分拣机及人工分拣时会产生错烟等问题。从兼顾实时性、识别精度出发,基于YOLOv5s算法提出一种收敛速度更快、准确率更高的条烟识别模型。方法首先在YOLOv5s网络架构中融入CA注意力模块来更好地提取特征,提高模型获取目标位置的准确度;其次将原网络中的最近邻插值上采样算子改为轻量级通用上采样算子CARAFE,获得更大的感受野;然后在骨干网络中嵌入Ghost模块,对网络进行轻量化处理;最后在烟草物流中心搭建条烟图像采集系统,建立条烟图像数据集。结果相较于YOLOv5s,本文提出的优化算法计算量减少了45.8%,mAP@0.5值达到了99.3%,在条烟纠错系统上识别率约为99.9%。结论本文提出的优化算法能够高精度满足高速条烟分拣识别需求。 展开更多
关键词 YOLOv5算法 条烟识别 Ghost模块 ca注意力机制
下载PDF
改进YOLOv5框架在细菌计数方向的研究
11
作者 高新颖 刘晶雪 +2 位作者 张静 左兴盛 张林林 《计算机科学与应用》 2024年第9期111-120,共10页
水中细菌数量的多少作为衡量水质的重要指标之一,其变化可以间接地反映水体污染程度。水中细菌总数反映了水体被有机物污染的程度。为了能快速、高效、准确地统计出细菌总量,将深度学习引入环境工程中,提出一种基于YOLOv5的细菌计数改... 水中细菌数量的多少作为衡量水质的重要指标之一,其变化可以间接地反映水体污染程度。水中细菌总数反映了水体被有机物污染的程度。为了能快速、高效、准确地统计出细菌总量,将深度学习引入环境工程中,提出一种基于YOLOv5的细菌计数改进算法。首先对自建细菌数据集使用K-means++聚类算法获得和特征图更加匹配的先验框,之后,在网络中增加一层小目标检测层,提高模型对图像中小目标的敏感度,最后,在骨干网络中C3层后引入一种协调注意力(CA),其不仅能捕获跨通道信息,还能捕获方向感知和位置敏感信息,提高对小目标的识别度,这有助于模型提高对密集预测任务的性能。实验表明,相比于传统的YOLOv5框架算法,改进后的算法在测试集上的平均检测率到达93.04%,提高了7.68%,同时训练损失也更低,验证了增加小目标检测层和注意力机制对细菌图像这种小目标密集检测有较好效果。该算法的引入可以提高细菌计数效率和计数精准度,同时实现对细菌数量的高精度分析,从而进一步深入研究微生物群落的结构、环境污染的程度以及疾病的诊断与治疗等方面,为环境监测提供了有力支持。The number of bacteria in water is one of the important indicators to measure water quality, and the change of bacteria number can indirectly reflect the degree of water pollution. At the same time, the total number of bacteria in water reflects the degree of pollution by organic matter. In order to count the total amount of bacteria quickly, efficiently and accurately, an improved algorithm of bacteria counting based on YOLOv5 is proposed by introducing deep learning into environmental engineering. Firstly, a K-means++ clustering algorithm is used for the self-built bacteria dataset to obtain priori frames that match more closely with the feature map. Secondly, a small target detection layer is added to the network to improve the sensitivity of the model to small targets in images, finally, a coordinated attention (CA) is introduced after the C3 layer in the backbone network, which can capture not only cross-channel information but also orientation-aware and position-sensitive information to improve the recognition of small targets, which helps the model to improve its performance for dense prediction tasks. Experiments show that the improved algorithm achieves an average detection rate of 93.04% on the test set compared to the traditional YOLOv5 framework algorithm, an improvement of 7.68%, as well as a lower training loss, verifying that the addition of the small target detection layer and the attention mechanism is more effective for dense detection of small targets like bacterial images. The introduction of this algorithm can improve the efficiency and accuracy of bacterial counting, and can achieve high precision analysis of bacterial counts, further deepening the study of the structure of microbial communities, the degree of environmental pollution, and the diagnosis and treatment of diseases, providing strong support for environmental monitoring. 展开更多
关键词 卷积神经网络 CUDA ca注意力机制 深度学习 YOLOv5 K-MEANS
下载PDF
基于改进YOLOv5算法的瓜蒌分级方法
12
作者 霍正瑞 孙铁波 《中国农机化学报》 北大核心 2024年第4期100-107,共8页
为解决瓜蒌检测技术存在的检测精度低且检测时间长的问题,提出一种基于改进YOLOv5算法的瓜蒌分级方法YOLOv5-GCB。在主干网络引入Ghost卷积模块替换传统卷积,在保证准确率的同时减少模型的参数量;在特征提取网络和推理层之间添加CA注意... 为解决瓜蒌检测技术存在的检测精度低且检测时间长的问题,提出一种基于改进YOLOv5算法的瓜蒌分级方法YOLOv5-GCB。在主干网络引入Ghost卷积模块替换传统卷积,在保证准确率的同时减少模型的参数量;在特征提取网络和推理层之间添加CA注意力模块,增强模型对空间和通道信息的关注,提高检测精度;在颈部网络中引入双向加权特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始结构,融合不同尺度特征提升多尺度目标的表达能力。结果表明:与原有的YOLOv5模型相比,改进的YOLOv5-GCB算法对瓜蒌等级的检测准确率提高4%,达到95.3%,检测速度达到31.5 fps。该研究提出的算法在保证瓜蒌分级检测准确率的同时拥有更高的识别速度,为实际场景中的瓜蒌分级提供理论研究和技术支持。 展开更多
关键词 瓜蒌分级 目标检测 多尺度特征融合 ca注意力机制
下载PDF
基于改进YOLOv7的织物表面疵点检测技术
13
作者 任经琦 张团善 赵浩铭 《沈阳大学学报(自然科学版)》 CAS 2024年第2期112-120,F0003,共10页
针对目前纺织工业中织物疵点检测技术的局限性,提出一种用于自动检测织物缺陷的改进YOLOv7算法。首先,在颈部网络引入SPD-Conv模块,在进行卷积下采样时保留与疵点相关的特征辨别信息,解决了原网络对于小目标的特征信息学习不足的问题;其... 针对目前纺织工业中织物疵点检测技术的局限性,提出一种用于自动检测织物缺陷的改进YOLOv7算法。首先,在颈部网络引入SPD-Conv模块,在进行卷积下采样时保留与疵点相关的特征辨别信息,解决了原网络对于小目标的特征信息学习不足的问题;其次,YOLOv7的主干网络通过引入CA注意力机制,在兼顾通道注意力的同时,还考虑了位置信息,从而更有效地识别疵点;最后,把WIoU用作边框损失函数,使其更加侧重于一般品质的锚框,从而增强了YOLOv7的泛化能力。通过实验对比发现,改进后算法的mAP值为92.28%,精度为95.65%,分别比原始YOLOv7算法提高了2.64%和4.12%,能够达到纺织产业在疵点检测方面的要求。 展开更多
关键词 疵点检测 YOLOv7 SPD-Conv模块 WIoU ca注意力机制
下载PDF
基于改进YOLOv5s的电力作业人员安全帽检测算法研究
14
作者 刘昶成 邵文权 李玲陶 《国外电子测量技术》 2024年第2期34-42,共9页
传统的电力施工现场安全帽检测算法的网络计算复杂度高、在复杂场景下对于远处目标和密集群体存在漏检等问题,提出一种改进后的轻量化YOLOv5s-GCAE算法,主干网络首先用GhostNet网络中的深度可分离卷积GhostConv,以此降低网络的计算量和... 传统的电力施工现场安全帽检测算法的网络计算复杂度高、在复杂场景下对于远处目标和密集群体存在漏检等问题,提出一种改进后的轻量化YOLOv5s-GCAE算法,主干网络首先用GhostNet网络中的深度可分离卷积GhostConv,以此降低网络的计算量和参数量。其次在特征提取阶段中嵌入CA注意力机制,填补了引入轻量化网络时精度的缺失。引入自适应空间特征融合(ASFF)网络以有效融合多尺度特征,提高模型丰富的语义特征表示使网络更好的适应复杂的电力施工现场。最后引入损失函数EIOU,促使网络专注于高质量的锚点以提升在复杂场景下安全帽检测精度。构建了一个包含开源图片和自行收集的图片共9326张的安全帽佩戴检测数据集。实验结果表明,该算法的安全帽检测准确率为93.4%,比YOLOv5s算法高2.1%,符合电力场景下安全帽检测的精度要求。 展开更多
关键词 安全帽检测 电力场景 YOLOv5s ca注意力模块 Ghost Net
下载PDF
基于改进YOLOv5的遥感图像小目标检测算法
15
作者 王欣 江涛 +2 位作者 魏玉梅 马珍 白金燕 《计算机与数字工程》 2024年第7期2050-2054,2060,共6页
遥感图像中小目标占图像的比例极小,准确识别这些目标具有很大的挑战性。针对遥感图像领域小目标检测困难的问题,提出一种改进YOLOv5遥感图像小目标算法。首先,使用改进后的Mosaic-9对数据集进行了预处理,以此解决遥感图像小目标研究数... 遥感图像中小目标占图像的比例极小,准确识别这些目标具有很大的挑战性。针对遥感图像领域小目标检测困难的问题,提出一种改进YOLOv5遥感图像小目标算法。首先,使用改进后的Mosaic-9对数据集进行了预处理,以此解决遥感图像小目标研究数据稀缺的问题。其次,在主干网络中添加CA注意机制模块增加对细节信息的感知力,提升对小目标的检测能力。最后,在特征融合网络引入高效的双向跨尺度连接加权特征融合BiFPN,解决目标特征较少且易丢失的问题。实验结果表明,改进的网络模型对遥感图像小目标检测平均精度(mAP)达到90.3%,优于常规目标检测模型,适合遥感场景下的小目标检测。 展开更多
关键词 YOLOv5 遥感图像 小目标检测 ca注意力机制 BiFPN
下载PDF
改进轻量化 YOLOv7-tiny 道路限高障碍物检测方法
16
作者 张青春 王文聘 +2 位作者 张洪源 张恩溥 宁建峰 《中国测试》 CAS 北大核心 2024年第5期186-192,共7页
针对道路限高障碍物检测困难、模型复杂以及难以在嵌入式端部署等问题,提出一种基于改进轻量化YOLOv7-tiny模型的道路限高障碍物检测方法。改进模型采用更加轻量的FasterNet网络替换原有主干网络,在Neck层使用PConv卷积替代部分Conv卷积... 针对道路限高障碍物检测困难、模型复杂以及难以在嵌入式端部署等问题,提出一种基于改进轻量化YOLOv7-tiny模型的道路限高障碍物检测方法。改进模型采用更加轻量的FasterNet网络替换原有主干网络,在Neck层使用PConv卷积替代部分Conv卷积,以减少计算冗余和内存访问,从而有效降低模型的参数量和计算量。同时,引入CA注意力机制提高检测精度,并使用Focal-EIoU损失函数优化模型的收敛速度和效率。实验结果表明:相较于YOLOv7-tiny目标检测模型,改进模型在检测数据集上,mAP@0.5提高6.6%,参数量和计算量分别降低24%和20.5%,模型权重文件减少27.2%,能够在保持较高检测精度的同时,满足轻量化的需求。 展开更多
关键词 障碍物检测 轻量化 YOLOv7-tiny FasterNet PConv卷积 ca注意力机制
下载PDF
基于YOLO v5l-Im的排水管道缺陷检测方法及效果分析
17
作者 王俊岭 王晨晨 熊玉华 《科学技术与工程》 北大核心 2024年第18期7833-7842,共10页
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo... 针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。 展开更多
关键词 排水管道缺陷检测 YOLO v5l Focal-EIoU损失函数 BiFPN特征网络 ca注意力模块 融合检测
下载PDF
基于优化改进的YOLOv4算法在骑行头盔佩戴检测上的研究
18
作者 周方 《西安交通工程学院学术研究》 2024年第2期34-40,27,共8页
针对当前算法在交通环境中对电动车和摩托车驾驶员的头盔配戴检测表现出较高的漏检率和定位精度不足等问题,本文提出了一种优化改进的YOLOv4算法。引入了轻量级网络MobileNetV2替代CSPDarknet53主干网络,不仅显著减少了参数数量和计算成... 针对当前算法在交通环境中对电动车和摩托车驾驶员的头盔配戴检测表现出较高的漏检率和定位精度不足等问题,本文提出了一种优化改进的YOLOv4算法。引入了轻量级网络MobileNetV2替代CSPDarknet53主干网络,不仅显著减少了参数数量和计算成本,而且保持了必要的表征能力。采用CA注意力机制结合深度可分离卷积提升网络特征的代表性,并且与深度可分离卷积结合进一步优化了计算效率。为了更有效地利用不同层次的特征并提升检测性能,引入了SPP+最大池化结构。在不同的空间尺度上捕捉和融合特征,促进模型捕获更为全面的上下文信息。实验结果表明,优化改进的YOLOv4算法mAP值达到了98.55%,比YOLOv4算法提高了1.9%,检测速度由35.66fps/s提升至53.25fps/s。确保准确度的前提,优化改进的YOLOv4算法在头盔配戴检测任务上的表现有了显著提升,使其更适用于轻量级应用场景。 展开更多
关键词 目标检测 YOLOv4 MobileNetv2 ca注意力机制 SPP+
下载PDF
基于YOLOv5的铁路接触网异物检测模型初步研究
19
作者 赵仲瑜 唐伟忠 +2 位作者 张文辉 蒲伟 牛超群 《铁路计算机应用》 2024年第2期13-18,共6页
接触网上附着的异物是影响铁路列车运行安全的一大隐患,在开行列车前需要检查接触网上是否有异物附着。目前,接触网异物检测主要依靠人工巡检,工作效率低,人力物力消耗大。文章通过建模实验,初步探讨利用基于深度学习的目标检测技术实... 接触网上附着的异物是影响铁路列车运行安全的一大隐患,在开行列车前需要检查接触网上是否有异物附着。目前,接触网异物检测主要依靠人工巡检,工作效率低,人力物力消耗大。文章通过建模实验,初步探讨利用基于深度学习的目标检测技术实现铁路接触网异物检测的可行性;构建了3种接触网异物检测模型:YOLO(You Only Look Once)v5模型、YOLOv5+坐标注意力(CA,Coordinate Attention)改进模型和YOLOv5+ConvNext Block改进模型,利用包含鸟窝和轻质异物两种常见异物的接触网图像数据集,对这3种模型进行实验分析。实验结果表明,相比YOLOv5算法,对于检测鸟窝和轻质异物两种常见的接触网异物,YOLOv5+CA改进模型和YOLOv5+ConvNext Block改进模型具有更好的效果,且YOLOv5+ConvNext Block改进模型检测小尺寸目标的能力更强。 展开更多
关键词 铁路接触网 异物检测 基于深度学习的目标检测 YOLOv5 坐标注意力(ca) ConvNext Block
下载PDF
面向航天光学遥感复杂场景图像的舰船检测 被引量:6
20
作者 刘忻伟 朴永杰 +2 位作者 郑亮亮 徐伟 籍浩林 《光学精密工程》 EI CAS CSCD 北大核心 2023年第6期892-904,共13页
基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一... 基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一种改进的YOLOX-s(Improved You Only Look Once-s,IM-YOLO-s)算法。在特征提取阶段,引入CA位置注意力模块,分别从高度与宽度两个方向对目标信息的位置进行权重分配,提高了模型的检测精度;在特征融合阶段,将BiFPN加权特征融合算法应用到IM-YOLO-s的颈部结构,进一步提升了小目标船只检测精度;在模型优化训练阶段,以CIoU损失替代IoU损失、以变焦损失替代置信度损失、调整类别损失权重,增大了正样本分布密集区域的训练权重,减少了密集分布船只的漏检率。另外,在HRSC2016数据集的基础上增加额外的离岸中小舰船图像,自建了HRSC2016-Gg数据集,HRSC2016-Gg数据集增强了海上船只及中小像素船只检测时的鲁棒性。通过数据集HRSC2016-Gg评测算法性能,实验结果表明:IM-YOLO-s对于SORS场景舰船检测的召回率为97.18%,AP@0.5为96.77%,F1值为0.95,较原YOLOX-s算法分别提高了2.23%,2.40%和0.01。这充分表明该算法可以对SORS复杂背景图像进行高质量舰船检测。 展开更多
关键词 舰船检测 深度学习 ca注意力模块 加权特征融合 损失函数优化
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部