期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于CA-Res2-Unet的遥感图像土地利用现状信息提取研究
1
作者 孙才华 曹杨 +1 位作者 于红绯 陈雪健 《辽宁石油化工大学学报》 CAS 2024年第3期89-96,共8页
遥感图像信息提取与人工智能算法结合是国土资源及环境部门进行土地利用现状调查、监测和管理的重要技术手段。针对U-net在遥感图像提取产生的空间信息定位不足和多尺度目标特征分割不准确的问题,提出了一种在Res2Net头部融入注意力模... 遥感图像信息提取与人工智能算法结合是国土资源及环境部门进行土地利用现状调查、监测和管理的重要技术手段。针对U-net在遥感图像提取产生的空间信息定位不足和多尺度目标特征分割不准确的问题,提出了一种在Res2Net头部融入注意力模块取代U-net编码部分的CA-Res2-Unet模型,旨在增强U型网络的空间定位和多尺度特征信息分割能力;通过WHDLD公共数据集和沈抚新区自制数据集,在主流网络和改进模型上进行了实验。结果表明,该模型较基础模型U-net在WHDLD公共数据集和沈抚新区自制数据集上实验的整体准确率、平均交并比和mF1分数(各类F1分类的平均值)三个评价指标分别提高了0.92%、2.00%、1.58%和1.18%、2.87%、1.91%,所提出方法的图像分割视觉效果和各项定量指标均优于其他主流语义分割网络,可为区域土地利用现状调查和相关部门决策提供科学依据。 展开更多
关键词 ca-res2-unet 遥感图像 土地利用现状 空间信息定位 多尺度目标
下载PDF
基于Res2-UNet模型的皮带煤量检测
2
作者 成彦颖 白尚旺 《计算机与数字工程》 2023年第7期1635-1639,共5页
为了能够检测煤矿井下的煤量,预测和提高煤的利用率,同时节省电能,减少人力的监管和资源成本。利用煤矿安装的视频监控系统,采用非接触的方式通过Camshift算法对快速运动皮带上的煤量捕捉和跟踪,然后建立Res2-UNet模型来获得显著性信息... 为了能够检测煤矿井下的煤量,预测和提高煤的利用率,同时节省电能,减少人力的监管和资源成本。利用煤矿安装的视频监控系统,采用非接触的方式通过Camshift算法对快速运动皮带上的煤量捕捉和跟踪,然后建立Res2-UNet模型来获得显著性信息,融合灰度、纹理、边缘等特征到单一的网络中,实现了皮带煤量的检测。模型利用U-Net网络的思想以编码器-解码器为架构,编码器以Res2Net网络为骨干网络提取煤流不同层次特征的信息,解码器通过反卷积上采样操作恢复图像尺寸。经过构建皮带数据集训练和测试模型,实验结果表明,提出的方法能够快速准确地检测出皮带上的煤料,精确率达到95.5%,每张图像从输入网络到输出的运行时间为4.8s。表明该方法具有一定的实用性和有效性。 展开更多
关键词 煤量检测 CAMSHIFT算法 编码器-解码器 Res2-unet模型 U-Net网络 Res2Net网络
下载PDF
A Hybrid Deep Learning Approach to Classify the Plant Leaf Species
3
作者 Javed Rashid Imran Khan +3 位作者 Irshad Ahmed Abbasi Muhammad Rizwan Saeed Mubbashar Saddique Mohamed Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第9期3897-3920,共24页
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi... Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively. 展开更多
关键词 Plant leaf species stacking ensemble model GUAVA POTATO java plum MobileNetV2-unet hybrid deep learning segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部