The globalization and the intensive competition of th e automotive market require shortening the product development cycle, improving the quality and reducing the cost. Optimizing the product development process, b ui...The globalization and the intensive competition of th e automotive market require shortening the product development cycle, improving the quality and reducing the cost. Optimizing the product development process, b uilding product’s consistent defining model for life cycle, and realizing the in tegration of CAD/CAM/CAE and Concurrent Engineering (CE) become the means to acc ept the challenge. A new product modeling technology, Multi Model Technology (MM T), is provided in this paper to meet the needs of the challenge for automotive powertrain product development. First, the paper introduces the concept of Multi Model Technology. MMT introduce s Object-oriented Technology (OT) into product modeling process and combine OT with feature-based modeling technology. With the help of OT, MMT builds product object model to support system level management in product development. The obj ect model of the product is a Multi Model Structure. The MMS consists of finish part model level (assembly model level), rough part model level (part model leve l), function model level and basic model level. Every models in the MMS is creat ed by feature-based technology in design process. In this case, models in the M MS of product can be shared by casting mould, sand core and sand core mould. The refore, CAD engineers, CAE engineers and CAM engineers can work concurrently and the integration of CAD/CAM/CAE can be realized. Second, MMT is applied in cylinder head development. The multi model structures of cylinder head, its casting mould, sand core and sand core mould are built, an d the process-oriented feature models of every objects in the multi model struc tures are modeled, the application of different model objects in development pro cess is analyzed. The integrated modeling technology of cylinder head, its casti ng mould, sand core and sand core mould under MMT is studied. And the concurrent engineering oriented integration method of CAD/CAE and the method to realize th e integration of CAD/CAE under MMT are also discussed. Based on above, the integ ration of CAD/CAM/CAE of cylinder head is realized in automotive powertrain prod uct. The practice results shows that the modeling technology in this paper can optimi ze the development process, realize the data sharing and concurrent engineering in the product development process.展开更多
CAD technique and its software products have been d ev eloped independently of CAPP, but the market’s requirements on reducing lead-t ime of a new product and promoting automation of design and manufacture processe s...CAD technique and its software products have been d ev eloped independently of CAPP, but the market’s requirements on reducing lead-t ime of a new product and promoting automation of design and manufacture processe s need integration of CAPP with CAD. The base of CAXs’ integration in product d esign and manufacture is information integration. There are several information integration approaches, for example, by data format transition through special d ata interface, or by standard format file for data exchange (e.g. based on S TEP),etc, but the integrating approach based on PDM is a more advanced and effic ient one. The approach is based on a common database. The feature model data of a product created by the CAD sub-system is stored in the common database, and the CAPP or CAM sub-system can get access to the data for its own work, by whic h repeated input of the data is avoided and data redundancy is eliminated. T he integration approach of CAPP with CAD discussed in this paper is based on the approach. Solid Edge, one of the CAD software products of UGS company is a 3-D modeling software based on parametric feature modeling technique, which is easy to learn and use, so suitable for small and medium manufacturers’ application. The feature data of the part model created by Solid Edge Part includes geometri c and topologic information of the part which provides basic data needed by CAPP , but like other 3-D feature-based modeling software, no precision and materia l information which is also essential for CAPP. In this paper, an approach is pr esented by which the precision features and material features of the part are ad ded into the 3-D CAD part model of geometric feature. So-called precision features include dimension tolerance, shape tolerance and position tolerance and so-called material features include material type and hardness. All these data are expressed by a set of characters which, combined with the surface t ype name of the related geometric feature, is substituted for the original syste m name of the geometric feature by using the rename function of the feature tree in the EdgeBar of "Solid Edge Part" GUI. If a feature joint of the feature tree is pointed by the mouse cursor, the related profile of the model in the working area of Solid Edge Part GUI is highlighted. In this visual way, precision featu res and material features of the part are added into the part model and for each geometric feature of a part model, the surface type and dimensions created by t he 3-D feature-based modeling software are combined with the precision and mat erial properties added. Then by a VB program, all these feature data are extract ed from the model and stored in a feature table of the common database ready for CAPP visit. The database is built by using Microsoft Access. The precision feat ures and material features data are obtained by applying "split" function of VB to the character set extracted as the name property of each geometric feature ob ject of the part model. The VB program can be made a custom-defined menu comman d running in the GUI of Solid Edge Part. All of the other related key techniques are detailed in the paper and an example is given.展开更多
An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database...An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database provided by AutoCAD R14, and EDM feature modeling is realized in AutoCAD environments.展开更多
The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed We...The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed Web-based system is to exchange messages between a server and a client by making of ActiveX control, and the result of mould identification is shown on Web-browser at remote site. For effective feature classification and extraction, the signature method is used to make meaningful information from obtained image data. For on-machine measurement of the matched mould, inspection database is constructed from CAD database using developed inspection planning methods. The results are simulated and analyzed using developed system to verify the effectiveness of the proposed methods.展开更多
A brief discussion of the content and methodology of STEP is given, and STEP based strategies for CAD/CAPP information integration is pointed out. A STEP based feature technology in which a three layer feature defini...A brief discussion of the content and methodology of STEP is given, and STEP based strategies for CAD/CAPP information integration is pointed out. A STEP based feature technology in which a three layer feature definition is included is discussed, the content of feature information is analyzed and a stratified CAD feature library is shown. On these bases, a commonly shared part information model is proposed. The architecture of the integrated CAD/CAPP system is presented.展开更多
The TangShan Research Institute of Group Technology has been engaged in the develop- ment of GT for the light industry machinery building factories since 1980.Under its overall supervision more than 8 factories have a...The TangShan Research Institute of Group Technology has been engaged in the develop- ment of GT for the light industry machinery building factories since 1980.Under its overall supervision more than 8 factories have applied GT to drawing control and process planning,while 4 of them reorga- nized their machine shops into GT cells and the throughput capabilities were raisd immediately by 15 to even 49%. Since the existing GT coding systems predict only the global characteristics of machine parts,their application alone is unable to transfer all the information needed for the CAD/CAM integration in a CIM environment.From the very beginning of 1989,we started to study the feasibility of introducing concepts of Functional Form Features into GT codes.Based on the exhaustive study of nearly 100,000 part drawings from machineries for making pottery and porcelain appliances,cigarette,paper pulp, glass bottles,plastics moulding,beer and beverage filling etc.,a new GT/FFF coding system was worked out and a corresponding set of standard drawings assembled from FFF primitives Was formulat- ed which can cover up to 65—75% of existing parts from light industry machineries.FFF based GT codes greatly facilitate the standardization control of released drawings,accelerate the engineering de- sign and process planning,and certainly will play an important role in the future CIM organization.展开更多
文摘The globalization and the intensive competition of th e automotive market require shortening the product development cycle, improving the quality and reducing the cost. Optimizing the product development process, b uilding product’s consistent defining model for life cycle, and realizing the in tegration of CAD/CAM/CAE and Concurrent Engineering (CE) become the means to acc ept the challenge. A new product modeling technology, Multi Model Technology (MM T), is provided in this paper to meet the needs of the challenge for automotive powertrain product development. First, the paper introduces the concept of Multi Model Technology. MMT introduce s Object-oriented Technology (OT) into product modeling process and combine OT with feature-based modeling technology. With the help of OT, MMT builds product object model to support system level management in product development. The obj ect model of the product is a Multi Model Structure. The MMS consists of finish part model level (assembly model level), rough part model level (part model leve l), function model level and basic model level. Every models in the MMS is creat ed by feature-based technology in design process. In this case, models in the M MS of product can be shared by casting mould, sand core and sand core mould. The refore, CAD engineers, CAE engineers and CAM engineers can work concurrently and the integration of CAD/CAM/CAE can be realized. Second, MMT is applied in cylinder head development. The multi model structures of cylinder head, its casting mould, sand core and sand core mould are built, an d the process-oriented feature models of every objects in the multi model struc tures are modeled, the application of different model objects in development pro cess is analyzed. The integrated modeling technology of cylinder head, its casti ng mould, sand core and sand core mould under MMT is studied. And the concurrent engineering oriented integration method of CAD/CAE and the method to realize th e integration of CAD/CAE under MMT are also discussed. Based on above, the integ ration of CAD/CAM/CAE of cylinder head is realized in automotive powertrain prod uct. The practice results shows that the modeling technology in this paper can optimi ze the development process, realize the data sharing and concurrent engineering in the product development process.
文摘CAD technique and its software products have been d ev eloped independently of CAPP, but the market’s requirements on reducing lead-t ime of a new product and promoting automation of design and manufacture processe s need integration of CAPP with CAD. The base of CAXs’ integration in product d esign and manufacture is information integration. There are several information integration approaches, for example, by data format transition through special d ata interface, or by standard format file for data exchange (e.g. based on S TEP),etc, but the integrating approach based on PDM is a more advanced and effic ient one. The approach is based on a common database. The feature model data of a product created by the CAD sub-system is stored in the common database, and the CAPP or CAM sub-system can get access to the data for its own work, by whic h repeated input of the data is avoided and data redundancy is eliminated. T he integration approach of CAPP with CAD discussed in this paper is based on the approach. Solid Edge, one of the CAD software products of UGS company is a 3-D modeling software based on parametric feature modeling technique, which is easy to learn and use, so suitable for small and medium manufacturers’ application. The feature data of the part model created by Solid Edge Part includes geometri c and topologic information of the part which provides basic data needed by CAPP , but like other 3-D feature-based modeling software, no precision and materia l information which is also essential for CAPP. In this paper, an approach is pr esented by which the precision features and material features of the part are ad ded into the 3-D CAD part model of geometric feature. So-called precision features include dimension tolerance, shape tolerance and position tolerance and so-called material features include material type and hardness. All these data are expressed by a set of characters which, combined with the surface t ype name of the related geometric feature, is substituted for the original syste m name of the geometric feature by using the rename function of the feature tree in the EdgeBar of "Solid Edge Part" GUI. If a feature joint of the feature tree is pointed by the mouse cursor, the related profile of the model in the working area of Solid Edge Part GUI is highlighted. In this visual way, precision featu res and material features of the part are added into the part model and for each geometric feature of a part model, the surface type and dimensions created by t he 3-D feature-based modeling software are combined with the precision and mat erial properties added. Then by a VB program, all these feature data are extract ed from the model and stored in a feature table of the common database ready for CAPP visit. The database is built by using Microsoft Access. The precision feat ures and material features data are obtained by applying "split" function of VB to the character set extracted as the name property of each geometric feature ob ject of the part model. The VB program can be made a custom-defined menu comman d running in the GUI of Solid Edge Part. All of the other related key techniques are detailed in the paper and an example is given.
文摘An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database provided by AutoCAD R14, and EDM feature modeling is realized in AutoCAD environments.
基金Project (No. KRF-2005-202-D00046) supported by the Korea Re-search Foundation
文摘The purpose of this study is to develop a Web-based on-machine mould identification and measurement system. The Web-based mould identification system matches obtained vision information with CAD database. Developed Web-based system is to exchange messages between a server and a client by making of ActiveX control, and the result of mould identification is shown on Web-browser at remote site. For effective feature classification and extraction, the signature method is used to make meaningful information from obtained image data. For on-machine measurement of the matched mould, inspection database is constructed from CAD database using developed inspection planning methods. The results are simulated and analyzed using developed system to verify the effectiveness of the proposed methods.
文摘A brief discussion of the content and methodology of STEP is given, and STEP based strategies for CAD/CAPP information integration is pointed out. A STEP based feature technology in which a three layer feature definition is included is discussed, the content of feature information is analyzed and a stratified CAD feature library is shown. On these bases, a commonly shared part information model is proposed. The architecture of the integrated CAD/CAPP system is presented.
文摘The TangShan Research Institute of Group Technology has been engaged in the develop- ment of GT for the light industry machinery building factories since 1980.Under its overall supervision more than 8 factories have applied GT to drawing control and process planning,while 4 of them reorga- nized their machine shops into GT cells and the throughput capabilities were raisd immediately by 15 to even 49%. Since the existing GT coding systems predict only the global characteristics of machine parts,their application alone is unable to transfer all the information needed for the CAD/CAM integration in a CIM environment.From the very beginning of 1989,we started to study the feasibility of introducing concepts of Functional Form Features into GT codes.Based on the exhaustive study of nearly 100,000 part drawings from machineries for making pottery and porcelain appliances,cigarette,paper pulp, glass bottles,plastics moulding,beer and beverage filling etc.,a new GT/FFF coding system was worked out and a corresponding set of standard drawings assembled from FFF primitives Was formulat- ed which can cover up to 65—75% of existing parts from light industry machineries.FFF based GT codes greatly facilitate the standardization control of released drawings,accelerate the engineering de- sign and process planning,and certainly will play an important role in the future CIM organization.