Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhom...Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero- Degasperis-Focas equation.展开更多
An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, lin...An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.展开更多
We study a multispecies one-dimensional Calogero model with two- and three-body interactions. Here, we factorize the ground stateout of the Hamiltonian H in order to get the new operatorwhich preserves some spaces of ...We study a multispecies one-dimensional Calogero model with two- and three-body interactions. Here, we factorize the ground stateout of the Hamiltonian H in order to get the new operatorwhich preserves some spaces of polynomialsin the case of equal masses, i.e. (the usual Calogero model) and in the case with different masses. The spectrum of these both cases is found easily.展开更多
We propose the exact solution of the equation in separated variable which appears in the process of constructing solutions to the quantum Calogero-Moser three-particle problem with elliptic two-particle potential . Th...We propose the exact solution of the equation in separated variable which appears in the process of constructing solutions to the quantum Calogero-Moser three-particle problem with elliptic two-particle potential . This solution is found for special values of coupling constants . It can be used for solving three-particle Calogero-Moser problem under the appropriate boundary conditions.展开更多
This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensiona...This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.展开更多
We present universal construction for the Calogero-Moser system with two types spins interaction of trigonometric potential based on the root system of semi-simple Lie algebra. In this formalism, we successfully build...We present universal construction for the Calogero-Moser system with two types spins interaction of trigonometric potential based on the root system of semi-simple Lie algebra. In this formalism, we successfully build up the correct Lax pair as well as the R-matrix for this generalized Calogero-Moser models. Moreover using the property of root system, we make a concise explanation that in the quantized model, the R-matrix takes the same form as the classical one, which is the main new result of this paper.展开更多
Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differen...Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differential equations includes the generalized Calogero-Bogoyavlenskii-Schiff equation and the generalized BogoyavlenskyKonopelchenko equation as particular examples, and the other has the same bilinear form with different Dp-operators.A class explicit lump solutions of the new nonlinear differential equation is constructed by using the Hirota bilinear approaches. A specific case of the presented lump solution is plotted to shed light on the charateristics of the lump.展开更多
基金The project supported by Scientific Research and of Education Department of Heilongjiang Province of China under Grant No. 11511008
文摘Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero- Degasperis-Focas equation.
文摘An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.
文摘We study a multispecies one-dimensional Calogero model with two- and three-body interactions. Here, we factorize the ground stateout of the Hamiltonian H in order to get the new operatorwhich preserves some spaces of polynomialsin the case of equal masses, i.e. (the usual Calogero model) and in the case with different masses. The spectrum of these both cases is found easily.
文摘We propose the exact solution of the equation in separated variable which appears in the process of constructing solutions to the quantum Calogero-Moser three-particle problem with elliptic two-particle potential . This solution is found for special values of coupling constants . It can be used for solving three-particle Calogero-Moser problem under the appropriate boundary conditions.
文摘This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.
文摘We present universal construction for the Calogero-Moser system with two types spins interaction of trigonometric potential based on the root system of semi-simple Lie algebra. In this formalism, we successfully build up the correct Lax pair as well as the R-matrix for this generalized Calogero-Moser models. Moreover using the property of root system, we make a concise explanation that in the quantized model, the R-matrix takes the same form as the classical one, which is the main new result of this paper.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11775146 and 11472177National Science Foundation under Grant No.DMS-1664561
文摘Based on the Hirota bilinear operators and their generalized bilinear derivatives, we formulate two new(2+1)-dimensional nonlinear partial differential equations, which possess lumps. One of the new nonlinear differential equations includes the generalized Calogero-Bogoyavlenskii-Schiff equation and the generalized BogoyavlenskyKonopelchenko equation as particular examples, and the other has the same bilinear form with different Dp-operators.A class explicit lump solutions of the new nonlinear differential equation is constructed by using the Hirota bilinear approaches. A specific case of the presented lump solution is plotted to shed light on the charateristics of the lump.