The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and...The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.展开更多
文摘The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.