With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm...With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre...Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.展开更多
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ...Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.展开更多
The rise of online-to-offline(O2O)e-commerce business has brought tremendous opportunities to the logistics industry.In the online-to-offline logistics business,it is essential to detect anomaly merchants with fraudul...The rise of online-to-offline(O2O)e-commerce business has brought tremendous opportunities to the logistics industry.In the online-to-offline logistics business,it is essential to detect anomaly merchants with fraudulent shipping behaviours,such as sending other merchants'packages for profit with their low discounts.This can help reduce the financial losses of platforms and ensure a healthy environment.Existing anomaly detection studies have mainly focused on online fraud behaviour detection,such as fraudulent purchase and comment behaviours in e-commerce.However,these methods are not suitable for anomaly merchant detection in logistics due to the more complex online and offline operation of package-sending behaviours and the interpretable requirements of offline deployment in logistics.MultiDet,a semi-supervised multiview fusion-based Anomaly Detection framework in online-to-offline logistics is proposed,which consists of a basic version SemiDet and an attention-enhanced multi-view fusion model.In SemiDet,pair-wise data augmentation is first conducted to promote model robustness and address the challenge of limited labelled anomaly instances.Then,SemiDet calculates the anomaly scoring of each merchant with an auto-encoder framework.Considering the multi-relationships among logistics merchants,a multi-view attention fusion-based anomaly detection network is further designed to capture merchants'mutual influences and improve the anomaly merchant detection performance.A post-hoc perturbation-based interpretation model is designed to output the importance of different views and ensure the trustworthiness of end-to-end anomaly detection.The framework based on an eight-month real-world dataset collected from one of the largest logistics platforms in China is evaluated,involving 6128 merchants and 16 million historical order consignor records in Beijing.Experimental results show that the proposed model outperforms other baselines in both AUC-ROC and AUC-PR metrics.展开更多
The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its ...The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.展开更多
Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of t...Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.展开更多
本文首次提出针对属性推理攻击的有效防御方法.属性推理攻击可以揭示出用于训练公开模型的原始私有数据集中的隐私属性信息.现有研究已经针对不同的机器学习算法提出了多种属性推理攻击.这些攻击很难防御,一方面原因是训练有素的模型总...本文首次提出针对属性推理攻击的有效防御方法.属性推理攻击可以揭示出用于训练公开模型的原始私有数据集中的隐私属性信息.现有研究已经针对不同的机器学习算法提出了多种属性推理攻击.这些攻击很难防御,一方面原因是训练有素的模型总是会记住训练数据集中的显性和隐性全局属性,另一方面原因在于模型提供者无法事先知道哪些属性将受到攻击从而难以有针对性地进行防御.为了解决这个问题,本文提出了一种通用的隐私保护模型训练方法,名为PPMT(Privacy Preserving Model Training).它以迭代的方式工作.在每次迭代中,PPMT构建一个代理数据集,并在该数据集而不是私有数据集上训练模型.虽然每次迭代会同时导致隐私性的提升和功能性的降低,但隐私性的提升呈快速指数级,而功能性的降低则是缓慢线性的.经过多次迭代,PPMT在模型功能性的约束下最大化全局属性的隐私性,并生成最终的模型.本文选择了两种代表性的机器学习算法和三个典型的数据集来进行实验评估PPMT所训练出模型的功能性、隐私性和鲁棒性.结果显示,使用PPMT训练出的模型,在全局属性上会以不同速度朝不同方向改变,在功能性上的平均损失为1.28%,在超参数α保密的情况下被可能攻击倒推的成功率仅有22%~33%.这说明,PPMT不仅能保护私有数据集的全局属性隐私性,而且能保证模型有足够的功能性,以及面对可能攻击的鲁棒性.展开更多
Artificial intelligence (AI) is revolutionizing the current approach to medicine. AI uses machine learning algorithms to predict the success of therapeutic procedures or assist the clinician in the decision-making pro...Artificial intelligence (AI) is revolutionizing the current approach to medicine. AI uses machine learning algorithms to predict the success of therapeutic procedures or assist the clinician in the decision-making process. To date, machine learning studies in the andrological field have mainly focused on prostate cancer imaging and management. However, an increasing number of studies are documenting the use of AI to assist clinicians in decision-making and patient management in andrological diseases such as varicocele or sexual dysfunction. Additionally, machine learning applications are being employed to enhance success rates in assisted reproductive techniques (ARTs). This article offers the clinicians as well as the researchers with a brief overview of the current use of AI in andrology, highlighting the current state-of-the-art scientific evidence, the direction in which the research is going, and the strengths and limitations of this approach.展开更多
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi...Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.展开更多
With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of...With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of the output produced is a crucial and challenging task.The purpose of this paper is to develop informative and controllable text using social media language by incorporating topic knowledge into a keyword-to-text framework.A novel Topic-Controllable Key-to-Text(TC-K2T)generator that focuses on the issues of ignoring unordered keywords and utilising subject-controlled information from previous research is presented.TC-K2T is built on the framework of conditional language encoders.In order to guide the model to produce an informative and controllable language,the generator first inputs unordered keywords and uses subjects to simulate prior human knowledge.Using an additional probability term,the model in-creases the likelihood of topic words appearing in the generated text to bias the overall distribution.The proposed TC-K2T can produce more informative and controllable senescence,outperforming state-of-the-art models,according to empirical research on automatic evaluation metrics and human annotations.展开更多
Rockburst is a phenomenon where sudden,catastrophic failure of the rock mass occurs in underground deep regions or areas with high tectonic stress during the excavation process.Rockburst disasters endanger the safety ...Rockburst is a phenomenon where sudden,catastrophic failure of the rock mass occurs in underground deep regions or areas with high tectonic stress during the excavation process.Rockburst disasters endanger the safety of people's lives and property,national energy security,and social interests,so it is very important to accurately predict rockburst.Traditional rockburst prediction has not been able to find an effective prediction method,and the study of the rockburst mechanism is facing a dilemma.With the development of artificial intelligence(AI)techniques in recent years,more and more experts and scholars have begun to introduce AI techniques into the study of the rockburst mechanism.In previous research,several scholars have attempted to summarize the application of AI techniques in rockburst prediction.However,these studies either are not specifically focused on reviews of the application of AI techniques in rockburst prediction,or they do not provide a comprehensive overview.Drawing on the advantages of extensive interdisciplinary research and a deep understanding of AI techniques,this paper conducts a comprehensive review of rockburst prediction methods leveraging AI tech-niques.Firstly,pertinent definitions of rockburst and its associated hazards are introduced.Subsequently,the applications of both traditional prediction methods and those rooted in AI techniques for rockburst prediction are summarized,with emphasis placed on the respective advantages and disadvantages of each approach.Finally,the strengths and weaknesses of prediction methods leveraging AI are summarized,alongside forecasting future research trends to address existing challenges,while simultaneously proposing directions for improvement to advance the field and meet emerging demands effectively.展开更多
在数字化时代背景下,网络安全面临的挑战日益增加,告警疲劳问题突出,传统的告警处理方法因难以区分真假威胁而效率低下。通过采用生成式人工智能(Artificial Intelligence,AI)技术,不仅能更准确地识别安全威胁、减少误报,还能提高安全...在数字化时代背景下,网络安全面临的挑战日益增加,告警疲劳问题突出,传统的告警处理方法因难以区分真假威胁而效率低下。通过采用生成式人工智能(Artificial Intelligence,AI)技术,不仅能更准确地识别安全威胁、减少误报,还能提高安全事件处理的效率。此外,AI的数据分析能力也有助于安全团队更有效应对复杂安全事件,提升网络安全运营水平。AI技术在实际应用中面临准确度和可解释性挑战,通过引入大型语言模型代理(Large Language Model Agent,LLM Agent)降噪系统,集成大小模型的能力,结合告警态势感知和知识库数据,能进一步提高降噪的准确率,实现告警降噪的高效处理。展开更多
基金Supported by the National Natural Science Foundation of China(11275164)~~
文摘With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-02-02385).
文摘Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.
基金supports from the National Natural Science Foundation of China(61801525)the independent fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05+3 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2023-3-5))the Foundation of the state key Laboratory of Transducer Technology(No.SKT2301),Shenzhen Science and Technology Program(JCYJ20220530161809020&JCYJ20220818100415033)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013)National Key R&D Program of China(2022YFB2802051).
文摘Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.
基金Major Project of Fundamental Research on Frontier Leading Technology of Jiangsu Province,Grant/Award Number:BK20222006Fundamental Research Funds for the Central Universities,Grant/Award Number:CUPL 20ZFG79001。
文摘The rise of online-to-offline(O2O)e-commerce business has brought tremendous opportunities to the logistics industry.In the online-to-offline logistics business,it is essential to detect anomaly merchants with fraudulent shipping behaviours,such as sending other merchants'packages for profit with their low discounts.This can help reduce the financial losses of platforms and ensure a healthy environment.Existing anomaly detection studies have mainly focused on online fraud behaviour detection,such as fraudulent purchase and comment behaviours in e-commerce.However,these methods are not suitable for anomaly merchant detection in logistics due to the more complex online and offline operation of package-sending behaviours and the interpretable requirements of offline deployment in logistics.MultiDet,a semi-supervised multiview fusion-based Anomaly Detection framework in online-to-offline logistics is proposed,which consists of a basic version SemiDet and an attention-enhanced multi-view fusion model.In SemiDet,pair-wise data augmentation is first conducted to promote model robustness and address the challenge of limited labelled anomaly instances.Then,SemiDet calculates the anomaly scoring of each merchant with an auto-encoder framework.Considering the multi-relationships among logistics merchants,a multi-view attention fusion-based anomaly detection network is further designed to capture merchants'mutual influences and improve the anomaly merchant detection performance.A post-hoc perturbation-based interpretation model is designed to output the importance of different views and ensure the trustworthiness of end-to-end anomaly detection.The framework based on an eight-month real-world dataset collected from one of the largest logistics platforms in China is evaluated,involving 6128 merchants and 16 million historical order consignor records in Beijing.Experimental results show that the proposed model outperforms other baselines in both AUC-ROC and AUC-PR metrics.
基金This research has been funded by Direccion General de Investigaciones of Universidad Santiago de Cali under call No.01-2021。
文摘The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.
文摘Higher order statistical features have been recently proved to be very efficient in the classification of wideband communications and radar signals with great accuracy. On the other hand, the denoising properties of the wavelet transform make WT an efficient signal processing tool in noisy environments. A novel technique for the classification of multi-user chirp modulation signals is presented in this paper. A combination of the higher order moments and cumulants of the wavelet coefficients as well as the peaks of the bispectrum and its bi-frequencies are proposed as effective features. Different types of artificial intelligence based classifiers and clustering techniques are used to identify the chirp signals of the different users. In particular, neural networks (NN), maximum likelihood (ML), k-nearest neighbor (KNN) and support vector machine (SVMs) classifiers as well as fuzzy c-means (FCM) and fuzzy k-means (FKM) clustering techniques are tested. The Simulation results show that the proposed technique is able to efficiently classify the different chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy. It is shown that the NN classifier outperforms other classifiers. Also, the simulations prove that the classification based on features extracted from wavelet transform results in more accurate results than that using features directly extracted from the chirp signals, especially at low values of signal-to-noise ratios.
文摘本文首次提出针对属性推理攻击的有效防御方法.属性推理攻击可以揭示出用于训练公开模型的原始私有数据集中的隐私属性信息.现有研究已经针对不同的机器学习算法提出了多种属性推理攻击.这些攻击很难防御,一方面原因是训练有素的模型总是会记住训练数据集中的显性和隐性全局属性,另一方面原因在于模型提供者无法事先知道哪些属性将受到攻击从而难以有针对性地进行防御.为了解决这个问题,本文提出了一种通用的隐私保护模型训练方法,名为PPMT(Privacy Preserving Model Training).它以迭代的方式工作.在每次迭代中,PPMT构建一个代理数据集,并在该数据集而不是私有数据集上训练模型.虽然每次迭代会同时导致隐私性的提升和功能性的降低,但隐私性的提升呈快速指数级,而功能性的降低则是缓慢线性的.经过多次迭代,PPMT在模型功能性的约束下最大化全局属性的隐私性,并生成最终的模型.本文选择了两种代表性的机器学习算法和三个典型的数据集来进行实验评估PPMT所训练出模型的功能性、隐私性和鲁棒性.结果显示,使用PPMT训练出的模型,在全局属性上会以不同速度朝不同方向改变,在功能性上的平均损失为1.28%,在超参数α保密的情况下被可能攻击倒推的成功率仅有22%~33%.这说明,PPMT不仅能保护私有数据集的全局属性隐私性,而且能保证模型有足够的功能性,以及面对可能攻击的鲁棒性.
文摘Artificial intelligence (AI) is revolutionizing the current approach to medicine. AI uses machine learning algorithms to predict the success of therapeutic procedures or assist the clinician in the decision-making process. To date, machine learning studies in the andrological field have mainly focused on prostate cancer imaging and management. However, an increasing number of studies are documenting the use of AI to assist clinicians in decision-making and patient management in andrological diseases such as varicocele or sexual dysfunction. Additionally, machine learning applications are being employed to enhance success rates in assisted reproductive techniques (ARTs). This article offers the clinicians as well as the researchers with a brief overview of the current use of AI in andrology, highlighting the current state-of-the-art scientific evidence, the direction in which the research is going, and the strengths and limitations of this approach.
基金National Natural Science Foundation of China,Grant/Award Number:61872171The Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering,Grant/Award Number:2021490811。
文摘Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.
基金Australian Research Council,Grant/Award Numbers:DP22010371,LE220100078。
文摘With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of the output produced is a crucial and challenging task.The purpose of this paper is to develop informative and controllable text using social media language by incorporating topic knowledge into a keyword-to-text framework.A novel Topic-Controllable Key-to-Text(TC-K2T)generator that focuses on the issues of ignoring unordered keywords and utilising subject-controlled information from previous research is presented.TC-K2T is built on the framework of conditional language encoders.In order to guide the model to produce an informative and controllable language,the generator first inputs unordered keywords and uses subjects to simulate prior human knowledge.Using an additional probability term,the model in-creases the likelihood of topic words appearing in the generated text to bias the overall distribution.The proposed TC-K2T can produce more informative and controllable senescence,outperforming state-of-the-art models,according to empirical research on automatic evaluation metrics and human annotations.
基金supported by the Institute for Deep Underground Science and Engineering(XD2021021)the BUCEA Post Graduate Innovation Project(PG2024099).
文摘Rockburst is a phenomenon where sudden,catastrophic failure of the rock mass occurs in underground deep regions or areas with high tectonic stress during the excavation process.Rockburst disasters endanger the safety of people's lives and property,national energy security,and social interests,so it is very important to accurately predict rockburst.Traditional rockburst prediction has not been able to find an effective prediction method,and the study of the rockburst mechanism is facing a dilemma.With the development of artificial intelligence(AI)techniques in recent years,more and more experts and scholars have begun to introduce AI techniques into the study of the rockburst mechanism.In previous research,several scholars have attempted to summarize the application of AI techniques in rockburst prediction.However,these studies either are not specifically focused on reviews of the application of AI techniques in rockburst prediction,or they do not provide a comprehensive overview.Drawing on the advantages of extensive interdisciplinary research and a deep understanding of AI techniques,this paper conducts a comprehensive review of rockburst prediction methods leveraging AI tech-niques.Firstly,pertinent definitions of rockburst and its associated hazards are introduced.Subsequently,the applications of both traditional prediction methods and those rooted in AI techniques for rockburst prediction are summarized,with emphasis placed on the respective advantages and disadvantages of each approach.Finally,the strengths and weaknesses of prediction methods leveraging AI are summarized,alongside forecasting future research trends to address existing challenges,while simultaneously proposing directions for improvement to advance the field and meet emerging demands effectively.
文摘在数字化时代背景下,网络安全面临的挑战日益增加,告警疲劳问题突出,传统的告警处理方法因难以区分真假威胁而效率低下。通过采用生成式人工智能(Artificial Intelligence,AI)技术,不仅能更准确地识别安全威胁、减少误报,还能提高安全事件处理的效率。此外,AI的数据分析能力也有助于安全团队更有效应对复杂安全事件,提升网络安全运营水平。AI技术在实际应用中面临准确度和可解释性挑战,通过引入大型语言模型代理(Large Language Model Agent,LLM Agent)降噪系统,集成大小模型的能力,结合告警态势感知和知识库数据,能进一步提高降噪的准确率,实现告警降噪的高效处理。