期刊文献+
共找到11,122篇文章
< 1 2 250 >
每页显示 20 50 100
结合LSTM自编码器与集成学习的井漏智能识别方法 被引量:2
1
作者 孙伟峰 冯剑寒 +3 位作者 张德志 李威桦 刘凯 戴永寿 《石油钻探技术》 CAS CSCD 北大核心 2024年第3期61-67,共7页
为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多... 为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多个包含不同隐藏层神经元数目的LSTM-AE模型,利用重构得分筛选出识别效果较好的几个模型作为基识别器;然后,采用集成学习对多个基识别器的识别结果进行加权融合,解决单一模型因对样本局部特征过度学习导致的误报与漏报问题,提高模型的识别准确率。从某油田18口井的钻井数据中选取了6000组正常钻进状态下的立压、出口流量、池体积数据,对集成LSTM-AE模型进行训练和测试,结果表明,提出方法的识别准确率达到了94.7%,优于其他常用的智能模型的识别结果,为井漏识别提供了一种新的技术途径。 展开更多
关键词 井漏识别 长短期记忆网络 编码器 集成学习
下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
2
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 TRANSFORMER 编码器 DETR 混合注意力
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:3
3
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于双层注意力和深度自编码器的时间序列异常检测模型 被引量:1
4
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 编码器 卷积神经网络 双向门循环单元
下载PDF
融合改进自编码器和残差网络的入侵检测模型 被引量:1
5
作者 陈虹 王瀚文 金海波 《计算机工程》 CAS CSCD 北大核心 2024年第2期188-195,共8页
互联网中存在大量隐私数据,因此防止网络入侵成为保护网络安全的关键问题。为提高网络入侵检测的准确率并解决其收敛慢问题,设计一种改进的堆叠自动编码器和残差网络(ISAE-ResNet)入侵检测模型。融合栈式自编码器和残差网络,首先将预处... 互联网中存在大量隐私数据,因此防止网络入侵成为保护网络安全的关键问题。为提高网络入侵检测的准确率并解决其收敛慢问题,设计一种改进的堆叠自动编码器和残差网络(ISAE-ResNet)入侵检测模型。融合栈式自编码器和残差网络,首先将预处理后的数据输入到改进的栈式自编码器中,该栈式自编码器由2个副编码器和1个主编码器组成,数据经过副编码器和主编码器训练后重构出新的特征来防止过拟合问题;然后将解码层的权重捆绑到编码层进行优化,使模型参数减半来进行降维,提高模型的收敛速度;最后将处理过的数据输入到改进的残差网络中,并基于改进的ResNet网络设计一种加入软阈值函数的残差模块,通过降低数据中的噪声来提高模型准确率。在CIC-IDS-2017数据集上的实验结果表明,该模型准确率为98.67%,真正例率为95.93%,误报率为0.37%,损失函数值快速收敛至0.042,在准确率、真正例率、误报率和收敛速度方面均超过对比入侵检测模型,具有较高的有效性和可行性。 展开更多
关键词 网络入侵检测 深度学习 栈式自编码器 残差网络 CIC-IDS-2017数据集
下载PDF
基于改进VGG16的自编码器视频异常检测算法 被引量:1
6
作者 杨大为 刘志权 《计算机技术与发展》 2024年第4期95-100,共6页
在使用自编码器结构的神经网络处理视频异常检测任务时,U-Net风格的自编码器由于编码器层数深度过浅,导致在面对复杂的数据集时,不能充分抽取更多有用的特征信息。同时,在训练模型时使用MSE(均方误差),仅考虑了预测帧与真实帧之间的像... 在使用自编码器结构的神经网络处理视频异常检测任务时,U-Net风格的自编码器由于编码器层数深度过浅,导致在面对复杂的数据集时,不能充分抽取更多有用的特征信息。同时,在训练模型时使用MSE(均方误差),仅考虑了预测帧与真实帧之间的像素级相似性,对于复杂场景,像素级相似性可能无法准确判断预测帧与真实帧之间的相似性。针对以上问题,对基于U-Net风格的自编码器进行改进,提出了一种使用改进的VGG16作为编码器的视频异常检测算法,同时在均方误差的基础上添加结构相似性(SSIM)损失函数。改进的VGG16去掉了全连接层,并加入了残差连接防止特征退化,添加SSIM在计算像素级相似性的同时计算图像的亮度、对比度和结构等方面的相似性来优化网络。实验结果表明,改进后的算法,在Ped2数据集上检测效果达到95.91%,在Avenue数据集上检测效果达到84.89%,与改进前的方法相比分别提高了0.80%和0.19%,验证了所提方法的有效性。 展开更多
关键词 编码器 U-Net 特征提取 VGG16 残差连接 结构相似性
下载PDF
基于改进型降噪自动编码器的家用负荷辨识方法
7
作者 刘宣 刘兴奇 +3 位作者 唐悦 窦健 巫钟兴 倪斌 《电测与仪表》 北大核心 2024年第11期68-75,90,共9页
家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑... 家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑动窗的重叠部分计算进行了改进,使用中值滤波器对重叠窗的数据结果进行处理,能够较好地克服辨识结果偏高的问题。通过在REDD(reference energy disaggregation dataset)和TraceBase两个家庭用电数据集开展测试,证明了所提方法在辨识设备功率和判断设备所处状态两个方面都具有较好的效果,且各项指标均好于经典的基于因子隐马尔可夫模型(factorial hidden Markov model,FHMM)算法。另外所提算法的通用性较好,能够对不同型号、品牌的同种设备进行有效辨识,具有较好的实用价值。 展开更多
关键词 负荷辨识 降噪自动编码器 REDD数据集 TraceBase数据集 机器学习
下载PDF
SOSNet:一种非对称编码器-解码器结构的非小细胞肺癌CT图像分割模型 被引量:2
8
作者 谢娟英 张凯云 《电子学报》 EI CAS CSCD 北大核心 2024年第3期824-837,共14页
非小细胞肺癌严重损害人类健康,早期非小细胞肺癌CT(Computed Tomography)图像中的肿瘤结节体积小,不易发现,极易造成漏诊和误诊.为了精确分割非小细胞肺癌CT图像中的小体积肿瘤结节,本文提出SOSNet(Small Object Segmentation Networks... 非小细胞肺癌严重损害人类健康,早期非小细胞肺癌CT(Computed Tomography)图像中的肿瘤结节体积小,不易发现,极易造成漏诊和误诊.为了精确分割非小细胞肺癌CT图像中的小体积肿瘤结节,本文提出SOSNet(Small Object Segmentation Networks)自动分割模型,利用ResNet(Residual Network)基础层和空洞卷积构造非对称编码器-解码器结构作为分割主网络,利用轴向取反注意力模块ARA(Axial Reverse Attention)逐步擦除背景中对分割有影响的结构,再使用结构细化模块SR(Structure Refinement)对主网络输出的粗略特征图进行结构细化,从而实现非小细胞肺癌肿瘤结节分割.在非小细胞肺癌公开数据集的实验测试表明,本文提出的小目标自动分割模型SOSNet可以有效分割出非小细胞肺癌CT图像中的小体积肿瘤结节,其mDice(mean-Dice)、mIoU(mean Intersection over Union)、Sensitivity、F1、Specificity、平均绝对误差MAE(Mean Absolute Error)均优于当前最先进的小目标分割模型CaraNet(Context Axial Reverse Attention Network). 展开更多
关键词 小目标分割 非小细胞肺癌 非对称编码器-解码器 结构细化 轴向取反注意力 CT图像 深度学习 卷积
下载PDF
基于分阶段自编码器与注意力机制的舰载机着舰航迹实时预测模型
9
作者 李哲 刘奕阳 +3 位作者 王可 杨杰 李亚飞 徐明亮 《计算机科学》 CSCD 北大核心 2024年第9期273-282,共10页
航空母舰舰载机着舰过程中应沿相对固定的航迹下滑,以保证触舰点位于舰艉拦阻系统所在的区域,因此舰载机航迹是着舰信号官进行指挥决策的重要依据之一。舰载机航迹实时预测有助于着舰信号官判断着舰作业发展态势,及时形成正确的航迹纠... 航空母舰舰载机着舰过程中应沿相对固定的航迹下滑,以保证触舰点位于舰艉拦阻系统所在的区域,因此舰载机航迹是着舰信号官进行指挥决策的重要依据之一。舰载机航迹实时预测有助于着舰信号官判断着舰作业发展态势,及时形成正确的航迹纠偏引导指令。为此,提出一种基于分阶段自编码器与注意力机制的着舰航迹实时预测模型。第一阶段采用降噪自编码器对历史航迹数据进行特征提取;第二阶段基于长短期记忆网络构建时序自编码器,同时引入注意力机制对不同时刻的编码器输出分配不同的权重,自适应学习其对最终预测结果的影响强度。通过仿真实验将所提模型与6种基线模型进行对比,结果表明,所提模型的综合性能优于基线模型,能够满足着舰航迹实时准确预测的应用需求。 展开更多
关键词 舰载机着舰 航迹预测 长短期记忆网络 编码器 注意力机制
下载PDF
基于AGRU自动编码器的无监督刀具异常检测
10
作者 雷文平 闫灏 +2 位作者 李沁远 李岩 郑鹏 《机床与液压》 北大核心 2024年第22期30-37,共8页
目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该... 目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该模型使用门控循环单元搭建编码器和解码器,提取时序数据的深层特征。在编码器重构部分融入注意力机制,实现对关键特征的选择,从而提高模型效率。此外,提出结合长时评价窗机制的异常检测模型,以进一步增强检测能力和稳定性。最后,通过在实验所得数据集和公开数据集上进行实验,证明该方法的有效性和可行性。结果表明:该方法在不同数据集上的准确率均超过98%;与刀具状态监测领域其他方法相比,该方法无需进行大量实验来获取刀具全生命周期数据和磨损标签数据,便于刀具检测系统的开发和应用。 展开更多
关键词 刀具异常监测 自动编码器 时间序列 注意力机制
下载PDF
基于Time-awareLSTM双向自动编码器的患者疾病分型
11
作者 赵奎 李琦 +1 位作者 高延军 马慧敏 《计算机系统应用》 2024年第2期166-175,共10页
医学领域中,患有相同疾病的患者之间也存在差异性,看似简单的疾病也可能表现出不同程度的复杂性,这给患者的识别、治疗和预后都带来巨大挑战.本文使用以纵向非结构化时序存储的电子病历来解决患者异质性,通过抓住就诊时间间隔不规律的... 医学领域中,患有相同疾病的患者之间也存在差异性,看似简单的疾病也可能表现出不同程度的复杂性,这给患者的识别、治疗和预后都带来巨大挑战.本文使用以纵向非结构化时序存储的电子病历来解决患者异质性,通过抓住就诊时间间隔不规律的特点增强对于隐藏信息的获取,经过前向和后向的双向学习捕捉当前就诊记录与过去和未来信息的联系,加深对于原序列特征提取的层次,使模型做出更为精准的决策.本文提出的BT-DST模型使用time-aware LSTM单元构造双向自动编码器学习患者强大的单一表示,然后将其用于患者聚类,通过统计分析得到患者针对当前疾病的亚型分型,可针对不同群体采用不同类型的治疗干预,为不同类患者提供针对其健康状况的精准医疗. 展开更多
关键词 异质性 纵向非结构化 自动编码器 聚类
下载PDF
结合传递比与栈式自编码器的结构损伤识别
12
作者 方圣恩 刘洋 张笑华 《振动工程学报》 EI CSCD 北大核心 2024年第9期1460-1467,共8页
如何从土木结构响应数据中挖掘损伤特征并有效分类,是实现损伤模式识别的关键。为此,以框架结构为分析对象,搭建设有自编码器隐藏层和Softmax分类层的栈式自编码器网络,采用无监督联合有监督的混合学习机制;基于有限元分析获取框架不同... 如何从土木结构响应数据中挖掘损伤特征并有效分类,是实现损伤模式识别的关键。为此,以框架结构为分析对象,搭建设有自编码器隐藏层和Softmax分类层的栈式自编码器网络,采用无监督联合有监督的混合学习机制;基于有限元分析获取框架不同工况下的传递比函数值,构建训练集、验证集和测试集样本;通过预训练确定自编码器隐藏层的参数值如权重和偏置值,避免网络出现过拟合;采用微调方式进一步调整预训练后的网络参数值,再结合验证集实现对网络超参数的调整;将实测传递比数据输入网络,实现对框架节点损伤的评估。结果表明:所提方法能有效进行损伤特征的提取和分类,准确识别框架节点的单、双损伤工况,相较于传统浅层神经网络具有更高的识别准确度和更好的抗噪性。 展开更多
关键词 损伤识别 栈式自编码器 混合学习机制 传递比函数 框架结构
下载PDF
基于Sobel算子桥接的双编码器路面裂缝检测网络
13
作者 蓝章礼 徐元通 +2 位作者 赵胜薇 张洪 黄大荣 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期18-24,33,共8页
为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通... 为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通过桥接Sobel算子计算8个方向产生梯度编码的编码信息;然后,将原图编码结果与梯度编码结果通过一个多尺度的边缘信息弥补模块,以增强裂缝的边缘信息;最后,引入动态通道图卷积获得通道之间存在的拓扑关系,以突出重要通道的语义特征。研究结果表明:所提出的方法在DeepCrack、CamCrack789和CFD这3个基准数据集上取得较好的结果;综合指标ODS在DeepCrack、CamCrack789和CFD数据集分别为87.75%、85.05%、78.83%。 展开更多
关键词 道路工程 路面裂缝检测 编码器 SOBEL算子 边缘信息弥补 动态通道图卷积
下载PDF
基于自编码器的动态协作中继系统
14
作者 吴楠 王悦然 王旭东 《太赫兹科学与电子信息学报》 2024年第9期1014-1020,共7页
鉴于大多数现有端到端自编码器(AE)仅适用于点对点的通信场景,提出一种基于AE的动态协作通信系统,将基于深度学习的AE扩展到多点通信系统。构建了3个神经网络子系统,分别用于学习发送端、中继节点和接收端的最佳编码、传输和解码,通过... 鉴于大多数现有端到端自编码器(AE)仅适用于点对点的通信场景,提出一种基于AE的动态协作通信系统,将基于深度学习的AE扩展到多点通信系统。构建了3个神经网络子系统,分别用于学习发送端、中继节点和接收端的最佳编码、传输和解码,通过三者的联合训练达到多点通信系统的最佳传输性能。其中,发送端和接收端使用一维卷积层进行信号特征的提取及学习,中继节点通过引入密集层和一维卷积层,支持放大转发(AF)和解码转发(DF)两种经典的中继协作方式。仿真实验表明,在加性高斯白噪声以及瑞利衰落信道条件下,提出的模型采用两种不同的协作方式,其误码性能均优于单一点到点通信系统,验证了系统方案的可行性和有效性。此外,该系统支持动态的节点拓扑结构,在无需额外训练的条件下,本系统支持中继节点数量实时变化。 展开更多
关键词 编码器 动态中继 卷积神经网络
下载PDF
基于自编码器的差分隐私推荐算法
15
作者 王洪涛 杨昌松 +3 位作者 唐紫薇 刘真 丁勇 李春海 《通信技术》 2024年第6期617-625,共9页
随着深度学习技术在推荐系统领域的快速发展,用户隐私保护问题变得愈发突出。针对这一问题,提出了一种新颖的方法,将差分隐私及自编码器技术应用于深度学习模型训练中,并设计了DPAutoRec算法。该算法通过向梯度中添加符合差分隐私条件... 随着深度学习技术在推荐系统领域的快速发展,用户隐私保护问题变得愈发突出。针对这一问题,提出了一种新颖的方法,将差分隐私及自编码器技术应用于深度学习模型训练中,并设计了DPAutoRec算法。该算法通过向梯度中添加符合差分隐私条件的噪声,有效实现了用户隐私的保护。在Movielens-1M数据集上进行了广泛的实验验证,并与传统的AutoRec算法进行了对比,结果表明,在确保差分隐私的前提下,DPAutoRec能够提供有价值的预测结果,为用户隐私和个性化推荐的平衡提供了新的思路与解决方案。 展开更多
关键词 深度学习 推荐系统 差分隐私 编码器
下载PDF
融合注意力机制的自编码器推荐算法
16
作者 王永 刘岽 +1 位作者 杜锡为 肖玲 《运筹与管理》 CSSCI CSCD 北大核心 2024年第2期57-63,共7页
为充分获取用户的个性化信息,提高推荐算法的准确性,提出了一种融合注意力机制的自编码器推荐算法。所提算法首先针对数据中蕴含的低阶特征和高阶特征,专门设计了相应的特征提取模块,增强传统编码器的泛化能力和记忆能力,然后利用注意... 为充分获取用户的个性化信息,提高推荐算法的准确性,提出了一种融合注意力机制的自编码器推荐算法。所提算法首先针对数据中蕴含的低阶特征和高阶特征,专门设计了相应的特征提取模块,增强传统编码器的泛化能力和记忆能力,然后利用注意力机制对特征进行融合,得到关于用户偏好信息的向量表示,并通过解码器预测用户对物品的购买意愿,最终实现个性化推荐任务。在ML-100K,ML-1M和Yahoo Music三个数据集上进行实验,并与主流个性化推荐算法进行对比,本文算法在Precision,Recall,F1值和归一化折损累计增益(NDCG)四个指标上均有较大的提升。在互联网推荐场景下,本文算法能够充分挖掘出用户的偏好信息,为用户提供高质量的推荐结果即给出合理的物品购买决策建议,从而最大化满足用户需求。 展开更多
关键词 推荐算法 编码器 注意力机制 协同过滤
下载PDF
基于物品交互约束的自编码器推荐模型
17
作者 李昌兵 陈思彤 +2 位作者 罗陈红 邓江洲 叶建梅 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期1052-1061,共10页
近年来,自编码器凭借其良好的数据压缩能力在推荐领域得到广泛应用。研究发现,受推荐系统中数据稀疏性的影响,自编码器模型会因为用户与物品之间缺少交互而在训练过程中产生偏差,从而影响模型的推荐结果。为解决此问题,提出一种基于物... 近年来,自编码器凭借其良好的数据压缩能力在推荐领域得到广泛应用。研究发现,受推荐系统中数据稀疏性的影响,自编码器模型会因为用户与物品之间缺少交互而在训练过程中产生偏差,从而影响模型的推荐结果。为解决此问题,提出一种基于物品交互约束的自编码器推荐模型。该模型以物品交互情况作为约束条件,设计了新的参数更新规则,规避了由数据稀疏性引入的模型训练偏差。在此基础上,推荐模型还将物品标签信息引入到训练中,通过增加新的数据源来缓解数据稀疏性的影响,提升推荐性能。在3个不同规模和稀疏度的数据集上的实验表明,模型对稀疏数据集具有良好的适应性,能够有效提高推荐的准确性,展现出良好的应用潜力。 展开更多
关键词 编码器 推荐系统 物品交互约束 协同过滤
下载PDF
一种POA-VMD和自编码器结合的风电机组轴承劣化指标构建及故障诊断方法
18
作者 李俊卿 耿继亚 +3 位作者 国晓宇 刘若尧 胡晓东 何玉灵 《机床与液压》 北大核心 2024年第13期219-226,共8页
针对目前轴承性能劣化指标的构建及故障诊断高度依赖专家经验,限制条件繁多,实际应用情景单一的问题,提出一种鹈鹕优化算法(POA)优化的变分模态分解(VMD)和自编码器结合的风机轴承劣化指标构建及故障诊断方法。首先利用POA-VMD算法将轴... 针对目前轴承性能劣化指标的构建及故障诊断高度依赖专家经验,限制条件繁多,实际应用情景单一的问题,提出一种鹈鹕优化算法(POA)优化的变分模态分解(VMD)和自编码器结合的风机轴承劣化指标构建及故障诊断方法。首先利用POA-VMD算法将轴承振动信号采用自适应方法分解为K个固有模态分量(IMF),并针对上述分量分别构建K个自编码器;然后以正常状态振动信号的分解结果为训练样本完成自编码器的训练,并以训练完成后模型的输出结果为基础构建轴承劣化指标,借助劣化指标监测轴承早期微弱故障;最后对故障时刻振动信号的IMF分量重构结果进行包络谱分析,确定故障的类型。经实验验证:该方法不仅可以清晰地展现轴承的劣化过程,对早期微弱故障敏感性高,而且在故障发生后可以准确诊断出故障类型。 展开更多
关键词 风电机组 轴承劣化 故障诊断 鹈鹕优化算法 编码器 变分模态分解
下载PDF
散列记忆网络增强的自编码器异常检测方法
19
作者 代劲 王银宗 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1301-1310,共10页
深度自编码器是异常检测的重要工具,通过异常样本由于分布的差异,无法在编码器中进行重构这一假设实现对异常的检测.而实际应用中,由于深度自编码器的泛化性较强,异常输入后也能实现较好重构,导致漏检情况发生.本文在改进注意力机制基础... 深度自编码器是异常检测的重要工具,通过异常样本由于分布的差异,无法在编码器中进行重构这一假设实现对异常的检测.而实际应用中,由于深度自编码器的泛化性较强,异常输入后也能实现较好重构,导致漏检情况发生.本文在改进注意力机制基础上,构建了一个散列记忆网络增强的自编码器异常检测方法,较好解决了这一问题.首先,模型将输入编码为编码信息,根据编码信息获取子查询向量,然后通过子查询向量获取子注意力权重及对应子索引,再将子权重交叉求和获得散列权重及索引并从记忆网络单元检索出解码信息,最后利用解码信息进行重构输出.重构的输出总是与正常数据相似,使得异常输入与重构输出之间的重构误差将被放大,从而让异常更容易被识别.仿真实验表明,本文提出方法在图像、视频监控、通用异常检测任务中,均取得了较好的检测效果. 展开更多
关键词 异常检测 散列记忆网络 无监督 深度自编码器
下载PDF
结合图自动编码器和结构化注意力机制的miRNA-疾病关联预测方法
20
作者 谢国波 罗灿杰 +1 位作者 林志毅 江泽林 《计算机与现代化》 2024年第4期107-114,共8页
MicroRNA(miRNA)-疾病关联预测的研究有助于人类进行疾病预防、诊断和治疗等,许多研究人员开发出了基于图自动编码器的miRNA-疾病关联预测方法,然而大多数编码器方法在对中心节点编码的时候并没有考虑到邻居节点之间的差异。因此,本文... MicroRNA(miRNA)-疾病关联预测的研究有助于人类进行疾病预防、诊断和治疗等,许多研究人员开发出了基于图自动编码器的miRNA-疾病关联预测方法,然而大多数编码器方法在对中心节点编码的时候并没有考虑到邻居节点之间的差异。因此,本文提出一种结合图自动编码器和结构化注意力机制的miRNA-疾病关联预测方法(SAAE)。SAAE模型使用基于图神经网络的编码器,该编码器采用多个编码层堆叠的方式以探索多阶邻居的信息。为了将中心节点与邻居节点不同权重的特征信息进行融合并捕获节点在图中的高阶结构信息,引进结构化注意力机制对图节点的原始信息进行编码,以生成新的特征信息。随后,通过解码器进行解码,解码后的特征信息使用随机森林算法挖掘miRNA和疾病节点之间的潜在联系。实验结果表明,SAAE在5倍交叉验证的曲线下的平均面积为94.53%。此外,本文还进行了关于肾脏肿瘤和肺部肿瘤的2个案例研究,验证了SAAE预测的有效性。 展开更多
关键词 miRNA-疾病关联 图自动编码器 注意力机制 结构信息
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部