A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion...A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.展开更多
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p...Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.展开更多
AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients&...AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients' 3T MRI scan data were collected and sagittal uni-planar 3D reconstructions performed from the preoperative MRI. There were 24 meniscal tears in 24 patients, and nine controls. All patients had arthroscopic corroboration of MRI findings. Two independent observers prospectively reported on all 33 reconstructions. Meniscal tear presence or absence was noted, and tear configuration subsequently categorised as either radial, bucket-handle, parrot beak, horizontal or complex.RESULTS Identification of control menisci or meniscal tear presence was excellent(Accuracy: observer 1 = 90.9%; observer 2 = 81.8%). Of the tear configurations, bucket handle tears were accurately identified(Accuracy observer 1 and 2 = 80%). The remaining tear configurations were notaccurately discernable.CONCLUSION Uni-planar 3D reconstruction from 3T MRI knee scan sequences are useful in identifying normal menisci and menisci with bucket-handle tears. Advances in MRI sequencing and reconstruction software are awaited for accurate identification of the remaining meniscal tear configurations.展开更多
Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reporte...Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reported in the literature. The aim of this study was to apply digital medical technology in the context of hepatic surgery. Methods Data from 64-slice helical computed tomography of 17 patients, including 13 with hepatocellular carcinoma and 4 with hepatic hemangioma, were imported into independently developed medical image software program, segmentation and three-dimensional reconstruction were performed. The three-dimensional models were then processed with the FreeForm Modeling System. We used virtual surgical instruments to perform surgery on the models. Simulated surgeries included six hepatic segmentectomies, four left hemihepatectomies, three right hemihepatectomies for hepatocellular carcinoma, one hepatic segmentectomy, two stripping surgeries, and one irregular segmentectomy combined with stripping surgery for hemangioma. For resections involving more than three hepatic segments, total and residual functional hepatic volumes were measured before and after simulation surgery, and the resection ratio was calculated.Results The anatomy of the models was distinct and was used to localize lesions. We used virtual surgical instruments to perform simulated surgeries and used the models to optimize actual surgeries. We were able to minimize resection volume as well as surgical risk.Conclusions Digital medical technology is helpful in the diagnosis of hepatic disease and in optimizing surgical plans. Three-dimensional models can decrease surgical risk and help prevent postoperative hepatic failure.展开更多
文摘A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.
文摘Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
文摘AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients' 3T MRI scan data were collected and sagittal uni-planar 3D reconstructions performed from the preoperative MRI. There were 24 meniscal tears in 24 patients, and nine controls. All patients had arthroscopic corroboration of MRI findings. Two independent observers prospectively reported on all 33 reconstructions. Meniscal tear presence or absence was noted, and tear configuration subsequently categorised as either radial, bucket-handle, parrot beak, horizontal or complex.RESULTS Identification of control menisci or meniscal tear presence was excellent(Accuracy: observer 1 = 90.9%; observer 2 = 81.8%). Of the tear configurations, bucket handle tears were accurately identified(Accuracy observer 1 and 2 = 80%). The remaining tear configurations were notaccurately discernable.CONCLUSION Uni-planar 3D reconstruction from 3T MRI knee scan sequences are useful in identifying normal menisci and menisci with bucket-handle tears. Advances in MRI sequencing and reconstruction software are awaited for accurate identification of the remaining meniscal tear configurations.
基金This research was funded by the National Hlgh-Tech Research and Development Program of China (863 Program) (No. 2006AA2Z346), Guangdong Province Science Foundation Group Program (No. 6200171), National Nature Science Foundation of China (No. 30470493), and Science and Technology Projects of Guangdong Province (No. 2003C34303).
文摘Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reported in the literature. The aim of this study was to apply digital medical technology in the context of hepatic surgery. Methods Data from 64-slice helical computed tomography of 17 patients, including 13 with hepatocellular carcinoma and 4 with hepatic hemangioma, were imported into independently developed medical image software program, segmentation and three-dimensional reconstruction were performed. The three-dimensional models were then processed with the FreeForm Modeling System. We used virtual surgical instruments to perform surgery on the models. Simulated surgeries included six hepatic segmentectomies, four left hemihepatectomies, three right hemihepatectomies for hepatocellular carcinoma, one hepatic segmentectomy, two stripping surgeries, and one irregular segmentectomy combined with stripping surgery for hemangioma. For resections involving more than three hepatic segments, total and residual functional hepatic volumes were measured before and after simulation surgery, and the resection ratio was calculated.Results The anatomy of the models was distinct and was used to localize lesions. We used virtual surgical instruments to perform simulated surgeries and used the models to optimize actual surgeries. We were able to minimize resection volume as well as surgical risk.Conclusions Digital medical technology is helpful in the diagnosis of hepatic disease and in optimizing surgical plans. Three-dimensional models can decrease surgical risk and help prevent postoperative hepatic failure.